Leitlinienreport zur S3-Leitlinie Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms

Version 4.1 – August 2019
AWMF-Registernummer: 032-045OL
Inhaltsverzeichnis

1. Informationen zum Leitlinienreport .. 6
 1.1. Autoren des Leitlinienreports .. 6
 1.2. Herausgeber ... 6
 1.3. Federführende Fachgesellschaften .. 6
 1.4. Finanzierung der Leitlinie .. 6
 1.5. Kontakt ... 6
 1.6. Bisherige Änderungen an der Version 4 des Leitlinienreports 6
 1.7. Zitierweise .. 6
 1.8. Weitere Dokumente zur Leitlinie ... 7
 1.9. Abkürzungsverzeichnis ... 7

2. Geltungsbereich und Zweck der Leitlinie .. 9
 2.1. Adressaten .. 9
 2.2. Zielsetzung .. 9
 2.3. Gültigkeitsdauer und Aktualisierungsverfahren 10

3. Koordination und Redaktion ... 10
 3.1. Beteiligte Fachgesellschaften und Autoren 11
 3.2. Patientenbeteiligung .. 16
 3.3. Methodische Begleitung ... 16
 3.4. Arbeitsgruppen .. 17

4. Fragestellungen und Gliederung ... 20
 4.1. Themenbereiche .. 20

5. Methodisches Vorgehen ... 23
 5.1. Überblick .. 23
 5.2. Evidenzbasierung .. 23
6. **Ableitung der Qualitätsindikatoren** ...39

6.1. Zusammenfassung der Recherche .. 39
6.2. Rechercheauftrag .. 41
6.3. Recherchestrategien .. 42

6.4. **Bibliographische Datenbanken** .. 42
 6.4.1. **PubMed (12.06.2017)** .. 42
 6.4.2. **Cochrane (12.06.2017)** .. 42

6.5. **Nationale Qualitätsindikatorenpakete/-programme** 44

6.6. **Internationale Qualitätsindikatorenpakete/-programme** 44

6.7. Rechercheergebnisse ... 46

6.8. **Nationale Qualitätsindikatoren** ... 46
 6.8.1. **AQUA–Institut** ... 46
 6.8.2. **IQTIG** ... 46

6.9. **Internationale Qualitätsindikatoren** ... 50
 6.9.1. **National Quality Measures Clearinghouse** 50
 6.9.2. **AMA (American Medical Association)** ... 53
 6.9.3. **ASCO (American Society of Clinical Oncology)** 53
 6.9.4. **CIHI (Canadian Institute for Health Information)** 56
 6.9.5. **CQCO (Cancer Quality Council of Ontario) Cancer System Quality Index** 56
 6.9.6. **ISD Scotland Health Indicators** ... 58
 6.9.7. **NHS (National Health Services) Indicators for Quality Improvement** 62
 6.9.8. **NQF (National Quality Forum) Performance Measures** 64

6.10. **Identifizierte Publikationen zu Qualitätsindikatoren** 68
Empfehlungen .. 68

8. Reviewverfahren und Verabschiedung ... 69

9. Unabhängigkeit und Umgang mit Interessenkonflikten 121
 9.1. Einholung von Interessenkonflikterklärungen 121
 9.2. Bewertung von Interessenkonflikten ... 121
 9.2.1. Bewertungskriterien ... 121
 9.2.2. Umgang mit Interessenkonflikten ... 122

10. Verbreitung und Implementierung .. 132

11. Abbildungsverzeichnis ... 133

12. Tabellenverzeichnis .. 134

13. Anhang .. 138
 13.1. Änderungen im Rahmen der Aktualisierung 2017 138
 13.2. Verwendete Suchfilter anderer Anbieter 167
 13.2.1. Scottish Intercollegiate Guidelines Network (SIGN) 167
 13.2.2. University of Texas (UT Health) ... 169
 13.3. Schlüsselfragen (inkl. PICO-Schema) ... 170
 13.4. Evidenztabellen ... 187
 13.5. Recherchestrategien und Ergebnisse der Recherchen 253
 13.5.1. Kapitel 3.3 Frauen mit erhöhtem Risiko für Brustkrebs 253
 13.5.2. Kapitel 3.3 Frauen mit erhöhtem Risiko für Brustkrebs 263
 13.5.3. Kapitel 4.2 Prätherapeutische Ausbreitungsdiagnostik bei Patientinnen mit auffälligen bzw.
 suspekten Befunden der Mamma ... 271
 13.5.4. Kapitel 4.5 Pathomorphologische Untersuchungen 276
 13.5.5. Kapitel 4.7.5 Antikörpertherapie .. 295
 13.5.6. Kapitel 5.3 Therapie der lokoregionalen Rezidive 299
 13.5.7. Kapitel 5.4 Fernmetastasen ... 308
 13.5.8. Kapitel 6.4 Nachsorge ... 335
13.5.9. Kapitel Mammakarzinom in Schwangerschaft und Stillzeit, Schwangerschaft nach Mammakarzinom, Fertilitätserhalt ... 340
13.5.10. .. Kapitel Ältere Patientin ... 351

14. Literatur .. 357
1. Informationen zum Leitlinienreport

1.1. Autoren des Leitlinienreports
Stephanie Stangl, MPH, Institut für Klinische Epidemiologie und Biometrie, Würzburg, Dr. Markus Follmann, MPH MSc., Deutsche Krebsgesellschaft, Prof. Dr. Achim Wöckel, Universitätsfrauenklinik Würzburg (Leitlinienkoordinator)

1.2. Herausgeber
Leitlinienprogramm Onkologie der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF), Deutschen Krebsgesellschaft e.V. (DKG) und Deutschen Krebshilfe (DKH).

1.3. Federführende Fachgesellschaften
Deutsche Gesellschaft für Gynäkologie und Geburtshilfe (DGGG) Deutsche Krebsgesellschaft (DKG)

1.4. Finanzierung der Leitlinie
Diese Leitlinie wurde von der Deutschen Krebshilfe im Rahmen des Leitlinienprogramms Onkologie gefördert.

1.5. Kontakt
Office Leitlinienprogramm Onkologie
c/o Deutsche Krebsgesellschaft e.V.
Kuno-Fischer-Straße 8
14057 Berlin
www.leitlinienprogramm- Onkologie.de

1.6. Bisherige Änderungen an der Version 4 des Leitlinienreports

1.7. Zitierweise
1.8. **Weitere Dokumente zur Leitlinie**

Die Leitlinie liegt als Lang- und Kurzversion vor. Außerdem gibt es eine Patientenleitlinie (Laienversion der Leitlinie) und eine Buchversion. Alle Dokumente zur Leitlinie sind über die folgenden Seiten zugänglich:

- Leitlinienprogramm Onkologie (https://www.leitlinienprogramm-onkologie.de/leitlinien/mammakarzinom/)
- AWMF (www.leitlinien.net)
- Guidelines International Network (www.g-i-n.net)

1.9. **Abkürzungsverzeichnis**

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>Arbeitsgruppe</td>
</tr>
<tr>
<td>AGREE</td>
<td>Appraisal of Guidelines for Research and Evaluation (Leitlinienbewertungsinstrument)</td>
</tr>
<tr>
<td>AKDÄ</td>
<td>Arzneimittelkommission der deutschen Arzteschaft</td>
</tr>
<tr>
<td>AKF</td>
<td>Arbeitskreis Frauengesundheit</td>
</tr>
<tr>
<td>AWMF</td>
<td>Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.</td>
</tr>
<tr>
<td>CDSR</td>
<td>Akronym für: Cochrane Database of Systematic Reviews</td>
</tr>
<tr>
<td>CEBM</td>
<td>Centre for Evidence-Based Medicine</td>
</tr>
<tr>
<td>CENTRAL</td>
<td>Cochrane Central Register of Controlled Trials</td>
</tr>
<tr>
<td>CoI</td>
<td>Conflict of Interest (Interessenskonflikt)</td>
</tr>
<tr>
<td>DARE</td>
<td>Database of Abstracts of Reviews of Effects</td>
</tr>
<tr>
<td>DEGRO</td>
<td>Deutsche Gesellschaft für Radioonkologie</td>
</tr>
<tr>
<td>DGGG</td>
<td>Deutsche Gesellschaft für Gynäkologie und Geburtshilfe</td>
</tr>
<tr>
<td>DGS</td>
<td>Deutsche Gesellschaft für Senologie e. V.</td>
</tr>
<tr>
<td>DKG</td>
<td>Deutsche Krebsgesellschaft e. V.</td>
</tr>
<tr>
<td>DKH</td>
<td>Deutsche Krebshilfe e. V.</td>
</tr>
<tr>
<td>EK</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>GEKID</td>
<td>Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V.</td>
</tr>
<tr>
<td>G-I-N</td>
<td>Guidelines International Network</td>
</tr>
<tr>
<td>IQTIG</td>
<td>Institut für Qualitätssicherung und Transparenz im Gesundheitswesen</td>
</tr>
<tr>
<td>IQWiG</td>
<td>Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen</td>
</tr>
<tr>
<td>LL</td>
<td>Leitlinie</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>LoE</td>
<td>Level of Evidence (=Evidenzstärke)</td>
</tr>
<tr>
<td>NGC</td>
<td>National Guideline Clearinghouse</td>
</tr>
<tr>
<td>OL</td>
<td>Leitlinienprogramm Onkologie</td>
</tr>
<tr>
<td>PICO</td>
<td>Akronym für: Patient, Intervention, Compare (=Vergleichstherapie), Outcome (=Endpunkt)</td>
</tr>
<tr>
<td>QoL</td>
<td>Quality of Life</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised controlled trial = Randomisierte kontrollierte Studie</td>
</tr>
<tr>
<td>SF</td>
<td>Schlüsselfrage</td>
</tr>
<tr>
<td>SIGN</td>
<td>Scottish Intercollegiate Guidelines Network</td>
</tr>
</tbody>
</table>
2. Geltungsbereich und Zweck der Leitlinie

2.1 Adressaten
Die Empfehlungen der interdisziplinären Leitlinie (LL) richten sich an alle Ärzte und Angehörige von Berufsgruppen, die mit der Versorgung von Bürgerinnen im Rahmen der Früherkennung und Patientinnen mit Brustkrebs befasst sind (Gynäkologen, Allgemeinmediziner, Radiologen, Pathologen, Radioonkologen, Hämatonkologen, Psychonkologen, Physiotherapeuten, Pflegekräfte etc.) und alle an Brustkrebs erkrankten Frauen sowie deren Angehörige.

Weitere Adressaten sind:

- medizinisch-wissenschaftliche Fachgesellschaften und Berufsverbände
- Interessenvertretungen der Frauen (Frauengesundheitsorganisationen, Patienten- und Selbsthilfeorganisationen)
- Qualitätssicherungseinrichtungen und Projekte auf Bundes- und Länderebene
- gesundheitspolitische Einrichtungen und Entscheidungsträger auf Bundes- und Länderebene
- die Vertragsverantwortlichen von DMP-Programmen und Integrierten Versorgungsverträgen
- Kostenträger
- sowie die Öffentlichkeit zur Information über gute medizinische Vorgehensweise.

2.2 Zielsetzung
Die wesentliche Rationale für die Aktualisierung der LL ist die gleichbleibend hohe epidemiologische Bedeutung des Mammakarzinoms und die damit verbundene Krankheitslast. In diesem Zusammenhang sind die Auswirkungen neuer Versorgungskonzepte in ihrer Umsetzung zu prüfen. Der Bedarf zur Aktualisierung der LL ergibt sich zudem aus der Existenz neuer wissenschaftlicher Erkenntnisse und der Weiterentwicklung in der LL-Methodik. Zudem ist in regelmäßigen Abständen eine redaktionelle und inhaltliche Prüfung und Überarbeitung der Kernaussagen und Empfehlungen der LL erforderlich. Die Ziele der S3-LL für die Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms wurden aus der Ursprungsversion und der ersten beiden Aktualisierungen beibehalten und für die dritte Neuauflage ergänzt bzw. konkretisiert:

- Berücksichtigung aktueller Erkenntnisse evidenzbasieter Medizin und anerkannter Behandlungskonzepte
- Berücksichtigung der Erkenntnisse aus disseminierten LL und der flächendeckenden Erfassung der leitlinienbasierten Qualitätsindikatoren in der Aktualisierung und Umsetzung der LL
- Unterstützung der Einbindung der Patientinnen in Therapieentscheidungen und Positionierung ihrer individuellen Bedürfnisse
• flächendeckende Umsetzung einer multidisziplinären, qualitätsgesicherten und sektorenübergreifenden Versorgung des Mammakarzinoms
• konkretes Hinwirken auf Verbesserungen hinsichtlich einer bedarfsgerechten und qualitätsgesicherten psychosozialen Betreuung und Rehabilitation
• Unterstützung der Dokumentation von Epidemiologie und Verläufen von Brustkrebserscheinungen durch klinische Krebsregister
• systematische Berücksichtigung der Empfehlungen der Aus-, Fort- und Weiterbildung und in Qualitätsmanagementsystemen
• systematische Berücksichtigung der Empfehlungen und daraus abgeleiteten Qualitätsindikatoren in Disease-Management-Programmen (DMP), Zertifizierungsverfahren von Brustzentren, Krebsregistern sowie der externen, vergleichenden Qualitätssicherung und Vereinheitlichung der Dokumentationsanforderungen.

2.3. Gültigkeitsdauer und Aktualisierungsverfahren
Die S3-Leitlinie ist bis zur nächsten Aktualisierung gültig, die Gültigkeitsdauer wird auf 5 Jahre geschätzt. Vorgesehen sind kurzfristigere Aktualisierungen bei dringendem Änderungsbedarf. Kommentare und Hinweise zur Aktualisierung der Leitlinie sind ausdrücklich erwünscht und können an das Leitliniensekretariat adressiert werden:

Frau K. Brust (Brust_K@ukw.de)
Universitätsfrauenklinik Würzburg
Josef-Schneider-Str. 4, 97080 Würzburg

3. Koordination und Redaktion
Leitlinienkoordination (Haupt-Koordination)
Prof. Dr. med. Achim Wöckel, Universitätsklinikum Würzburg, Frauenklinik und Poliklinik,
Josef-Schneider-Str. 4, 97808 Würzburg

Mitkoordinatoren
Prof. Dr. med. Rolf Kreienberg, Landshut
Prof. Dr. med. Janni, Universitätsklinikum Ulm, Klinik für Frauenheilkunde und Geburtshilfe
3.1 Beteiligte Fachgesellschaften und Autoren

Leitliniensekretariat
Katharina Brust, B. Sc., Universitätsklinikum Würzburg, Frauenklinik und Poliklinik, Josef-Schneider-Str. 4, 97808 Würzburg

Tabelle 1: Mitglieder der Leitlinien-Steuergruppe in alphabetischer Reihenfolge

<table>
<thead>
<tr>
<th>Name</th>
<th>Stadt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Ute-Susann Albert</td>
<td>Frankfurt</td>
</tr>
<tr>
<td>Prof. Dr. Wilfried Budach</td>
<td>Düsseldorf</td>
</tr>
<tr>
<td>Dr. Markus Follmann, MPH, MSc</td>
<td>Berlin</td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Janni</td>
<td>Ulm</td>
</tr>
<tr>
<td>Prof. Dr. Ina Kopp</td>
<td>Marburg</td>
</tr>
<tr>
<td>Prof. Dr. Rolf Kreienberg</td>
<td>Landshut</td>
</tr>
<tr>
<td>PD Dr. Mathias Krockenberger</td>
<td>Würzburg</td>
</tr>
<tr>
<td>Prof. Dr. Thorsten Kühn</td>
<td>Esslingen</td>
</tr>
<tr>
<td>Dipl.-Soz. Wiss. Thomas Langer</td>
<td>Berlin</td>
</tr>
<tr>
<td>Dr. Monika Nothacker</td>
<td>Marburg</td>
</tr>
<tr>
<td>Prof. Dr. Anton Scharl</td>
<td>Amberg</td>
</tr>
<tr>
<td>Prof. Dr. Ingrid Schreer</td>
<td>Hamburg-Eimsbüttel</td>
</tr>
<tr>
<td>Prof. Dr. Achim Wöckel</td>
<td>Würzburg</td>
</tr>
</tbody>
</table>

Methodische Beratung: Prof. Dr. P. U. Heuschmann, Universität Würzburg

3.1. Beteiligte Fachgesellschaften und Autoren

Die Leitliniengruppe wurde vom Koordinator in Rücksprache mit der Steuergruppe einberufen. Dabei wurden alle bereits an der Erstellung der zweiten Aktualisierung beteiligten Fachgesellschaften, Arbeitsgemeinschaften und Organisationen angesprochen.

Diese wurden gebeten, Experten als Mandatsträger zu ihrer Vertretung in Abstimmungsprozessen (Konsensusverfahren) sowie für die inhaltliche Arbeit im Team in spezifischen Gruppen zu benennen (Tabelle 4). Alle Experten wurden nach dem Prinzip der Sach- und Fachkompetenz ausgewählt und eingeladen. Die Vertretung der mit herausgebenden Fachgesellschaften, Organisationen und Arbeitsgemeinschaften

Die Mitglieder der Leitlinien-Steuergruppe, die von den teilnehmenden Fachgesellschaften und Organisationen benannten sowie die von der Steuergruppe eingeladenen Experten stellen die Mitglieder der Arbeitsgruppen und sind die Autoren der LL. Stimmberechtigt in den Abstimmungsprozessen (Konsensusverfahren) waren nur die von den teilnehmenden Fachgesellschaften und Organisationen benannten Mandatsträger.
Tabelle 2: Beteiligte Fachgesellschaften und Organisationen

<table>
<thead>
<tr>
<th>Fachgesellschaften</th>
<th>1. Mandatsträger</th>
<th>2. Mandatsträger (Vertreter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG Radiologische Onkologie (ARO)</td>
<td>Prof. Dr. Wilfried Budach, Düsseldorf</td>
<td>Prof. Dr. Frederick Wenz, Mannheim</td>
</tr>
<tr>
<td>AG Supportive Maßnahmen in der Onkologie, Rehabilitation und Sozialmedizin (ASORS)</td>
<td>Prof. Dr. Hartmut Link, Kaiserslautern</td>
<td>Prof. Dr. Oliver Rick, Bad Wildungen</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Deutscher Tumorzentren e. V. (ADT) + Tumorregister München (TRM)</td>
<td>Prof. Dr. Jutta Engel, München</td>
<td>Prof. Dr. Dieter Hölzel, München</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft für gynäkologische Onkologie (AGO)</td>
<td>Prof. Dr. Tanja Fehm, Düsseldorf</td>
<td>Prof. Dr. Anton Scharl, Amberg</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft für Psychoonkologie in der Deutschen Krebsgesellschaft e. V. (PSO)</td>
<td>Prof. Dr. Joachim Weis, Freiburg</td>
<td></td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Internistische Onkologie (AIO)</td>
<td>Dr. Anja Welt, Essen</td>
<td>Dr. Matthias Zaiss, Freiburg</td>
</tr>
<tr>
<td>Arbeitskreis Frauengesundheit (AKF)</td>
<td>Prof. Dr. Anke Steckelberg, Halle</td>
<td>Gudrun Kemper, Berlin</td>
</tr>
<tr>
<td>Berufsverband Deutscher Strahlentherapeuten e. V. (BVDST)</td>
<td>Prof. Dr. Petra Feyer, Berlin</td>
<td>Prof. Dr. Volker Budach, Berlin</td>
</tr>
<tr>
<td>Berufsverband für Frauenärzte e. V.</td>
<td>Dr. Klaus König, Steinbach</td>
<td></td>
</tr>
<tr>
<td>BRCA-Netzwerk e. V.</td>
<td>Andrea Hahne, Bonn</td>
<td>Traudl Baumgartner, Bonn</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Pathologie</td>
<td>Prof. Dr. Hans H. Kreipe, Hannover</td>
<td>Prof. Dr. Carsten Denkert, Berlin</td>
</tr>
<tr>
<td>Chirurgische AG für Onkologie (CAO-V)</td>
<td>Prof. Dr. Wolfram Trudo Knoefel, Düsseldorf</td>
<td></td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Geriatrie (DGG)</td>
<td>Prof. Dr. Michael Denkinger, Ulm</td>
<td></td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Gynäkologie und Geburtshilfe (DGGG)</td>
<td>Prof. Dr. Sara Brucker, Tübingen</td>
<td>Prof. Dr. Bernd Gerber, Rostock</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Hämatologie und Onkologie (DGGH)</td>
<td>Prof. Dr. Diana Lüftner, Berlin</td>
<td>Prof. Dr. Hans Tesch, Frankfurt</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Humangenetik e. V. (Gfh)</td>
<td>Prof. Dr. Christian Kubisch, Hamburg</td>
<td></td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Nuklearmedizin (DGN)</td>
<td>Prof. Dr. Andreas Buck, Würzburg</td>
<td></td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Palliativmedizin (DGP)</td>
<td>Dr. Christina Gerlach, M. Sc., Mainz</td>
<td>Dr. Susanne Hirsmüller, Düsseldorf</td>
</tr>
<tr>
<td>Fachgesellschaften</td>
<td>1. Mandatsträger</td>
<td>2. Mandatsträger (Vertreter)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bundesverband Deutscher Pathologen e. V.</td>
<td>Prof. Dr. Annette Lebeau, Hamburg</td>
<td>Prof. Dr. Hans-Peter Sinn, Heidelberg</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für psychosomatische Frauenheilkunde und Geburtshilfe</td>
<td>PD Dr. Friederike Siedentopf, Berlin</td>
<td></td>
</tr>
<tr>
<td>(DGPFG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Radioonkologie (DEGRO)</td>
<td>Prof. Dr. Cordula Petersen, Hamburg</td>
<td>Prof. Dr. Jürgen Dunst, Kiel</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Rehabilitationswissenschaften (DGRW)</td>
<td>Prof. Dr. Hans Helge Bartsch, Freiburg</td>
<td></td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Senologie (DGS)</td>
<td>Prof. Dr. Rüdiger Schulz-Wendtland, Erlangen</td>
<td></td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Ultraschall in der Medizin e. V. (DEGUM)</td>
<td>Prof. Dr. Markus Hahn, Tübingen</td>
<td></td>
</tr>
<tr>
<td>Deutsche Krebsgesellschaft (DKG)</td>
<td>Prof. Dr. Volker Hanf, Fürth</td>
<td>Prof. Dr. Karsten Münstedt, Offenburg</td>
</tr>
<tr>
<td>Deutsche Röntgengesellschaft e. V.</td>
<td>Prof. Dr. Markus Müller-Schimpfe, Frankfurt</td>
<td>bis 31.12.16: Prof. Dr. Ulrich Bick, Berlin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ab 01.01.17: PD Dr. E. Fallenberg, Berlin</td>
</tr>
<tr>
<td>Deutscher Verband für Physiotherapie e. V. (ZVK)</td>
<td>Ulla Henscher, Hannover</td>
<td>Reina Tholen, Köln</td>
</tr>
<tr>
<td>Frauenselbsthilfe nach Krebs</td>
<td>Dr. Renza Roncarati, Battenberg</td>
<td>Roswita Hung, Wolfsburg</td>
</tr>
<tr>
<td>Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (GEKID)</td>
<td>Prof. Dr. Alexander Katalinic, Lübeck</td>
<td></td>
</tr>
<tr>
<td>Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgie (DGPRAC)</td>
<td>Prof. Dr. Christoph Heitmann, München</td>
<td></td>
</tr>
<tr>
<td>Gynecologie Suisse (SGGG)</td>
<td>Dr. Christoph Honegger, Baar</td>
<td></td>
</tr>
<tr>
<td>Konferenz Onkologischer Kranken- und Kinderkrankenpflege (KOK)</td>
<td>Kerstin Paradies, Hamburg</td>
<td></td>
</tr>
<tr>
<td>Österreichische Gesellschaft für Gynäkologie und Geburtshilfe (OEGGG)</td>
<td>Prof. Dr. Vesna Bjelic-Radisic, Graz</td>
<td></td>
</tr>
<tr>
<td>Ultraschalldiagnostik in Gynäkologie und Geburtshilfe (ARGUS)</td>
<td>Prof. Dr. Friedrich Degenhardt, Hannover</td>
<td></td>
</tr>
</tbody>
</table>
Zur Unterstützung der Steuergruppe in inhaltlichen Fragen zur Ergänzung der Fachkompetenz in der Leitliniengruppe und zur Unterstützung der inhaltlichen Arbeit im Team zwischen den Arbeitsgruppen wurden von der Steuergruppe weitere Experten eingeladen, die jedoch in der Konsensuskonferenz nicht stimmberechtigt waren (Tabelle 3).

Tabelle 3: Experten in beratender Funktion ohne Stimmberechtigung

<table>
<thead>
<tr>
<th>Name</th>
<th>Stadt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experten in beratender Funktion</td>
<td></td>
</tr>
<tr>
<td>PD Dr. Freerk Baumann</td>
<td>Köln</td>
</tr>
<tr>
<td>Prof. Dr. Matthias Beckmann</td>
<td>Erlangen</td>
</tr>
<tr>
<td>Prof. Dr. Jens Blohmer</td>
<td>Berlin</td>
</tr>
<tr>
<td>Prof. Dr. Peter Fasching</td>
<td>Erlangen</td>
</tr>
<tr>
<td>Prof. Dr. Nadia Harbeck</td>
<td>München</td>
</tr>
<tr>
<td>Prof. Dr. Peyman Hadji</td>
<td>Frankfurt</td>
</tr>
<tr>
<td>Prof. Dr. Hans Hauner</td>
<td>München</td>
</tr>
<tr>
<td>Prof. Dr. Sylvia Heywang-Köbrunner</td>
<td>München</td>
</tr>
<tr>
<td>Prof. Dr. Jens Huober</td>
<td>Ulm</td>
</tr>
<tr>
<td>Prof. Dr. Jutta Hübner</td>
<td>Berlin</td>
</tr>
<tr>
<td>Prof. Dr. Christian Jackisch</td>
<td>Offenbach</td>
</tr>
<tr>
<td>Prof. Dr. Sibylle Loibl</td>
<td>Neu-Isenburg</td>
</tr>
<tr>
<td>Prof. Dr. Hans-Jürgen Lück</td>
<td>Hannover</td>
</tr>
<tr>
<td>Prof. Dr. Michael Lux</td>
<td>Erlangen</td>
</tr>
<tr>
<td>Prof. Dr. Gunter von Minckwitz</td>
<td>Neu-Isenburg</td>
</tr>
<tr>
<td>Prof. Dr. Volker Möbus</td>
<td>Frankfurt</td>
</tr>
<tr>
<td>Prof. Dr. Volkmar Müller</td>
<td>Hamburg</td>
</tr>
<tr>
<td>Prof. Dr. Ute Nöthlings</td>
<td>Bonn</td>
</tr>
<tr>
<td>Prof. Dr. Marcus Schmidt</td>
<td>Mainz</td>
</tr>
<tr>
<td>Prof. Dr. Rita Schmutzler</td>
<td>Köln</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Schneeweiss</td>
<td>Heidelberg</td>
</tr>
<tr>
<td>Prof. Dr. Florian Schütz</td>
<td>Heidelberg</td>
</tr>
<tr>
<td>Prof. Dr. Elmar Stickeler</td>
<td>Aachen</td>
</tr>
<tr>
<td>Prof. Dr. Christoph Thomssen</td>
<td>Halle (Saale)</td>
</tr>
<tr>
<td>Prof. Dr. Michael Untch</td>
<td>Berlin</td>
</tr>
<tr>
<td>Dr. Simone Wesselmann, MBA</td>
<td>Berlin</td>
</tr>
</tbody>
</table>

3.2 Patientenbeteiligung

Die Leitlinie wurde unter direkter Beteiligung von 4 Patientenvertreterinnen erstellt.

Frau Roncarati und Frau Hung (Frauenselbsthilfe nach Krebs) waren von Beginn an in die Erstellung der Leitlinie eingebunden und nahmen mit eigenem Stimmrecht an den Konsensuskonferenzen teil. Frau Prof. Steckelberg und Frau Kemper, Arbeitskreis Frauen gesundheit (AKF) traten ebenfalls bei und nahmen mit eigenem Stimmrecht an den Konsensuskonferenzen teil.

3.3 Methodische Begleitung

Die methodische Begleitung erfolgte durch das Leitlinienprogramm Onkologie:

- Frau Dr. med. Monika Nothacker MPH (AWMF)
- Frau Prof. Dr. med. Ina Kopp (AWMF)
- Herr Dr. med. Markus Follmann MPH, MSc (DKG)
3.4 Arbeitsgruppen

Die Arbeitsgruppenleiter waren erster Ansprechpartner für die Leitlinien-Steuergruppe und das Leitlinien-Sekretariat. Zu den Aufgaben der Arbeitsgruppen zählten folgende Punkte:

- Konsentierung der Schlüsselfrage(n)
- Selektion identifizierter Literatur (sofern die AG eine de novo-Recherche hatte)
- Erstellung der Statements und Empfehlungen
- Abstimmung der Empfehlungen innerhalb der AG unter Moderation eines Methodikers (Frau Prof. Kopp/Frau Dr. Nothacker/Herr Dr. Follmann/Herr Langer) in einer Telefonkonferenz (als Vorlage für Plenumsabstimmung)
- Erstellung des Hintergrundtextes

Tabelle 4: Arbeitsgruppen und deren Mitglieder

<table>
<thead>
<tr>
<th>Arbeitsgruppe</th>
<th>Zusammensetzung der Arbeitsgruppe: Sprecher, (Reviewer), Arbeitsgruppenmitglieder (alphabetisch geordnet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Patientinneninformation und -aufklärung</td>
<td>Weis, (Schreer), Hirsmüller, Hung, Kemper, König, Paradies, Roncarati, Steckelberg</td>
</tr>
<tr>
<td>3.2. Früherkennung, Mammographiescreening</td>
<td>Albert, Schreer, (Müller-Schimpfle), Degenhardt, Engel, Hahn, Heywang-Köbrunner, Hölzle, Katalinic</td>
</tr>
<tr>
<td>3.3. Frauen mit erhöhtem Risiko für Brustkrebs</td>
<td>Schmutzler, (Fasching), Degenhardt, Fallenberg, Heitmann, Hahne, Kemper, Kubisch, Lebeau, Lück, Müller-Schimpfle, Steckelberg, Zimmer</td>
</tr>
<tr>
<td>4.2. Prätherapeutische Ausbreitungsdagnostik bei Patientinnen mit auffälligen bzw. suspekten Befunden der Mamma</td>
<td>Hahn, (Heywang-Köbrunner), Fallenberg, Bucker, Degenhardt, Müller-Schimpfle</td>
</tr>
<tr>
<td>Arbeitsgruppe</td>
<td>Zusammensetzung der Arbeitsgruppe: Sprecher, (Reviewer), Arbeitsgruppenmitglieder (alphabetisch geordnet)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4.3. Präinvasive Neoplasien</td>
<td>Sinn, (Gerber), Brucker, Budach W., Denkert, Fehm, Heitmann, Kreipe, Kühn, Lebeau, Schreer</td>
</tr>
<tr>
<td>4.4. Operative Therapie des invasiven Karzinoms</td>
<td>Fehm, (Budach W.), Bjelic-Radisic, Dunst, Engel, Heitmann, Honegger, Janni, Kühn, Petersen, Scharl, Sinn, Wöckel</td>
</tr>
<tr>
<td>4.5. Pathomorphologische Untersuchung</td>
<td>Lebeau, (Gerber), Brucker, Denkert, Kreipe, Schmidt, Schulz-Wendtland, Sinn</td>
</tr>
<tr>
<td>4.6. Adjuvante Strahlentherapie des Mammakarzinoms</td>
<td>Thomssen, (Budach W.), Budach V., Dunst, Engel, Fehm, Feyer, Hölzel, Katalinic, Petersen, Scharl, Schulz-Wendtland</td>
</tr>
<tr>
<td>4.7.2. Endokrine Therapie</td>
<td>Blohmer, (Schmidt), Bartsch, Bjelic-Radisic, Fehm, Hölzel, Jackisch, Link, Lüftner, Scharl, Tesch</td>
</tr>
<tr>
<td>4.7.3. Adjuvante Chemotherapie</td>
<td>Stickeler, (Lüftner), Brucker, Gerber, Harbeck, Möbus, Müller, Schneeweiss, Schulz-Wendtland, Tesch</td>
</tr>
<tr>
<td>4.7.4. Neoadjuvante Therapie</td>
<td>Untch, (Schneeweiss), Brucker, Gerber, Huober, Loibl, v. Minckwitz</td>
</tr>
<tr>
<td>4.7.5. Antikörpertherapie</td>
<td>Blohmer, Stickeler, Untch, (Lüftner, Schmidt, Schneeweiss)</td>
</tr>
<tr>
<td>4.7.6. Knochengerichtete Therapie</td>
<td>Schütz, (Hadji), Schulz-Wendtland, Stickeler</td>
</tr>
<tr>
<td>4.7.7. Beeinflussbare Lebensstilfaktoren</td>
<td>Janni, (Bumann), Hanf, Hauner, Nöthlings</td>
</tr>
<tr>
<td>5.2. Diagnostik des lokalen/lokoregionalen Rezidivs</td>
<td>Blohmer, (Fallenberg), Degenhardt, Hahn, König, Müller-Schimpfle, Scharl, Stickeler</td>
</tr>
<tr>
<td>5.3. Therapie des lokalen/lokoregionalen Rezidivs</td>
<td>Brucker, (Budach W.), Gerber, Heitmann, Hirsmüller, Jackisch, Lux</td>
</tr>
<tr>
<td>5.4. Fernmetastasen - Chemo</td>
<td>Huober, (Tesch), Bartsch, Brucker, Budach W., Gerber, Gerlach, Hirsmüller, Knoefel, Link, Lüftner, Schulz-Wendtland, Welt, Wenz, Zaiss</td>
</tr>
<tr>
<td>5.4. Fernmetastasen - Endokrin</td>
<td>Müller, (Lück), Bartsch, Brucker, Budach W., Gerber, Gerlach, Hirsmüller, Knoefel, Link, Lüftner, Schulz-Wendtland, Welt, Wenz, Zaiss</td>
</tr>
<tr>
<td>Arbeitsgruppe</td>
<td>Zusammensetzung der Arbeitsgruppe: Sprecher, (Reviewer), Arbeitsgruppenmitglieder (alphabetisch geordnet)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5.5. Palliativmedizin</td>
<td>Gerlach, Hirsmüller, Roncarati, Schmidt</td>
</tr>
<tr>
<td>6.2. Psychoonkologische Aspekte</td>
<td>Siedentopf, (Weis), Bartsch, Hirsmüller, Hung, Roncarati</td>
</tr>
<tr>
<td>6.3. Supportivtherapie</td>
<td>Lux, (Bartsch), Feyer, Gerlach, Henschger, Hung, Link, Roncarati</td>
</tr>
<tr>
<td>6.4. Nachsorge</td>
<td>König, (Albert), Beckmann, Bjelic-Radisic</td>
</tr>
<tr>
<td>6.5. Rehabilitation</td>
<td>Bartsch, Budach, Henschger, Hölzel, Hung, Janni, Rick, Roncarati, Schulz-Wendtland, Seifert, Weis</td>
</tr>
<tr>
<td>6.6. Komplementäre Medizin</td>
<td>Hanf, (Beckmann), Festl, Hung, Münstedt, Roncarati</td>
</tr>
<tr>
<td>6.7. Dokumentation, Versorgungscoordination und Qualitätsmanagement</td>
<td>Beckmann, Engel, Wesselmann, Budach W., Gerlach, Hirsmüller, Hölzel, Hübner, Katalinic, Lux, Schulz-Wendtland, Wöckel</td>
</tr>
<tr>
<td>7. Mammakarzinom in Schwangerschaft und Stillzeit, Schwangerschaft nach Mammakarzinom, Fertilitätserhalt</td>
<td>Loibl, (Harbeck), Degenhardt, Hadji</td>
</tr>
<tr>
<td>8. Mammakarzinom der älteren Patientin</td>
<td>Huober, (Lück), Albert, Denkinger, Gerlach, Scharl</td>
</tr>
<tr>
<td>9. Mammakarzinom des Mannes</td>
<td>Thomssen, (Müller), Albert</td>
</tr>
</tbody>
</table>
4. Fragestellungen und Gliederung

4.1. Themenbereiche

Die S3-Leitlinie behandelt 29 Themen zur Früherkennung, Diagnostik, Therapie und Nachsorge von PatientInnen mit Mammakarzinom.

Im Rahmen des Kick-off Meetings vom 09. November 2015 in Frankfurt/Main wurden die S3-Leitlinienstruktur, die endgültige Kapitelaufteilung - inklusive Festlegung der Arbeitsgruppenleiter, Reviewer, Experten und Arbeitsgruppenmitglieder - sowie die jeweiligen Überarbeitungsmodi definiert.

Die Hauptkomplexe der S3-Leitlinie wurden in folgende Kapitel strukturiert:

Kapitel 1: Information zu dieser Leitlinie
Kapitel 2: Einführung
Kapitel 3: Allgemeines
Kapitel 4: Lokoregional begrenzte Primärerkrankung
Kapitel 5: Das rezidivierte oder metastasierte Mammakarzinom
Kapitel 6: Behandlung, Betreuung, Begleitung
Kapitel 7: Neue Kapitel

Zur Bearbeitung der Themenkomplexe wurde für etwa 80% der Statements und Empfehlungen eine Leitlinienadaptation gemäß dem AWMF-Regelwerk vorgesehen. Für 20% der Statements und Empfehlungen wurde eine De-novo-Recherche nach systematischen Reviews oder Primärliteratur geplant, welche anhand entsprechender Schlüsselfragen bearbeitet wurden.

Anschließend wurde jede Arbeitsgruppe mit einem Informationspaket (Protokoll des Kick-off Meetings, Formular zur Interessenskonfliktklärung, Email-Adressen der Arbeitsgruppenmitglieder, S3-LL Wordversionen aus 2012 sowie bereits identifizierte Quell-LL) ausgestattet.

Beim Kick-off Meeting wurde zudem festgelegt für 17 Schlüsselfragen eine De-novo-Recherche durchzuführen. Im Laufe des Prozesses der Leitlinienaktualisierung ergaben sich weitere Themen, welche nicht durch Leitlinienadaptation beantwortet werden konnten. Für diese erfolgte ebenfalls eine Primärrecherche. Es folgt die Auflistung der Themen und der Schlüsselfragen.
Tabelle 5: Liste der Schlüsselfragen für die De-novo Recherche

<table>
<thead>
<tr>
<th>#</th>
<th>Schlüsselfrage (SF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapitel 3.3 Frauen mit erhöhtem Risiko für Brustkrebs</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SF 3.3-1: Profitieren Personen mit Mutationen in unten aufgeführten Genen von intensiveren Früherkennungsmaßnahmen ((Mammographie, Palpation andere) im Vergleich zu Mutationsträgerinnen ohne diese Maßnahmen (außerhalb der Usual Practice) bezogen auf Inzidenz, Mortalität, Lebensqualität/Quality of Life (QoL)?</td>
</tr>
<tr>
<td>2</td>
<td>SF 3.3-2: Profitieren Personen mit Mutationen in unten aufgeführten Genen von operativen Maßnahmen (Bilaterale prophylaktische Salpingo-Oophorektomie sowie Mastektomie) im Vergleich zu Mutationsträgerinnen ohne diese Maßnahmen (außerhalb der Usual Practice) bezogen auf Inzidenz, Mortalität, QoL?</td>
</tr>
<tr>
<td>Kapitel 4.2 Prätherapeutische Ausbreitungsdiagnostik bei Patientinnen mit auffälligen bzw. suspekten Befunden der Mamma</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SF 4.2-1: Ist bei Patienten (m/w) mit auffälligem, abzuklärendem Befund der Axilla die Tumorgewebsentnahme mittels der „Core needle biopsy“-Methode/Stanzbiopsie der Probenentnahme mittels Feinnadelbiopsie (Fine needle aspiration) bezogen auf Sensitivität/Specifität/Positiver Prädiktiver Wert (PPV)/Negativer Prädiktiver Wert (NPV)/Richtig Positiv (TP)/Falsch Negativ (FN)/Richtig Negativ (TN)/Falsch Negativ (FN) überlegen?</td>
</tr>
<tr>
<td>Kapitel 4.5 Pathomorphologische Untersuchungen</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SF 4.5-1: Lässt sich durch Multigentests (Oncotype, Prosigna, Endopredict, Mammaprint) bei nodal-positiven (1-3 Lymphknoten) ER-/PR-positiven und HER2-negativen Patientinnen, die ausschließlich mit endokriner Therapie behandelt werden, eine Gruppe, bei der auf eine adjuvante Chemotherapie verzichtet werden kann, besser abgrenzen als durch etablierte klinisch-pathologische Risikoeinteilungen?</td>
</tr>
<tr>
<td>5</td>
<td>SF 4.5-2: Lassen sich durch Hinzunahme von Ki67 bei Patientinnen mit einem ER-/PR-positiven, HER2-negativen Mammakarzinom prognostisch relevante Risikogruppen besser unterscheiden als durch etablierte klinisch-pathologische Risikoeinteilungen alleine, um mit höherer Sicherheit entscheiden zu können, ob einerseits auf eine adjuvante Chemotherapie verzichtet werden kann bzw. andererseits eine adjuvante Chemotherapie eingesetzt werden sollte?</td>
</tr>
<tr>
<td>Kapitel 4.6 Adjuvante Strahlentherapie</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SF 4.6-1: Profitieren Brustkrebspatienten (m/w) nach erfolgter Tumorresektion von einer Bestrahlung (zusätzlich zur Brust-Bestrahlung) der Lymphabflussgebiete bezüglich des Überlebens (rezidivfrei und overall) und der Lebensqualität im Vergleich zu Patienten, die die Bestrahlung der Lymphabflussgebiete erhalten?</td>
</tr>
<tr>
<td>7</td>
<td>SF 4.6-2: Profitieren Brustkrebspatienten (m/w) nach erfolgter Tumorresektion von einer Teilbestrahlung bezüglich des Überlebens (rezidivfrei und overall) und der Lebensqualität im Vergleich zu Patienten, die eine konventionelle Ganz-Brust-Bestrahlung erhalten?</td>
</tr>
<tr>
<td>8</td>
<td>SF 4.6-3: Profitieren Brustkrebspatienten (m/w) nach erfolgter Tumorresektion von einer Hypofraktionierung bezüglich des Überlebens (rezidivfrei und overall) und der Lebensqualität im Vergleich zu Patienten, die eine konventionelle Ganz-Brust-Bestrahlung erhalten?</td>
</tr>
<tr>
<td>Kapitel 4.7.5 Antikörpertherapie – Neoadjuvant</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SF 4.7.5-1: Ist die Behandlung von Brustkrebspatienten mit HER2-positiven Mammakarzinomen <1cm mit Trastuzumab (mit oder ohne Chemotherapie) hinsichtlich des progressionsfreien Überlebens (PFS) bzw. dem Overall Survival (OS) bezogen auf die Lebensqualität (QoL) im Vergleich zu bisherigen Therapien (Operation, Bestrahlung, oder Kombination oder Chemotherapie) überlegen?</td>
</tr>
<tr>
<td>10</td>
<td>SF 4.7.5-2: Gibt es Evidenz, dass für die Behandlung von Brustkrebspatienten mit HER2-positiven Mammakarzinomen mit Trastuzumab für 1 Jahr im Vergleich zur Einnahme von > bzw. < 1 Jahr...</td>
</tr>
</tbody>
</table>
Schlüsselfrage (SF)

hinsichtlich des progressionsfreien Überlebens (PFS) bzw. dem Overall Survival (OS) bzw. der Lebensqualität (QoL) Unterschiede bestehen?

Kapitel 5.3 Therapie des lokoregionalen Rezidivs

SF 5.3-1: Ist die Behandlung von Brustkrebspatienten (Erstdiagnose: pN0-pN+) bei ipsilateralem, supraclaviculärem, oder kontralateralem Lymphknotenrezidiv (pN1-pN3, M=0) mit systemischen Therapien (Chemotherapie/Hormontherapie entsprechend dem Tumorprofil) hinsichtlich des progressionsfreien Überlebens (PFS) bzw. dem Overall Survival (OS) bzw. der Lebensqualität (QoL) im Vergleich zu bisherigen Therapien (Operation, Beststrahlung, oder Kombination) überlegen?

Kapitel 5.4 Fernmetastasen

SF 5.4-1: Profitieren Brustkrebspatienten mit Hirnmetastasen (Stage IV, M1) von systemischen Therapien (Chemotherapie/Hormontherapie) hinsichtlich des progressionsfreien Überlebens (PFS) und/oder dem Overall Survival (OAS) und/oder der Lebensqualität (QoL) im Vergleich zu bisherigen Therapien (Operation, Radiatio, oder Kombination)?

SF 5.4-2: Profitieren Brustkrebspatienten mit isolierten Lebermetastasen (Stage IV, M1) von lokalen Therapien (Operation, Radiofrequenzablation, LITT, TACE, SIRT oder Kombination) im Vergleich zu etablierten systemischen Therapien (Chemotherapie/Hormontherapie/ Antikörpertherapie / mTor-/CDK4/6-Inhibitoren) hinsichtlich des progressionsfreien Überlebens (PFS) und/oder dem Overall Survival (OAS) und/oder der Lebensqualität (QoL)?

SF 5.4-3: Ist eine Chemotherapie-Form (Mono, Poly, Sequentiell) bei Brustkrebspatienten mit Fernmetastasen (Stage IV, M1) hinsichtlich des progressionsfreien Überlebens (PFS) und/oder dem Overall Survival (OAS) und/oder der Lebensqualität (QoL) den anderen überlegen?

Kapitel 6.4 Nachsorge

SF 6.4-1: Profitieren Brustkrebspatienten nach brusterhaltender Therapie und/ oder Mastektomie nach primär kurativer Therapie (Stadium UICC I-II) von Ultraschalluntersuchungen beider Brüste oder Thoraxwand und kontralaterale Brust und Axilla beidseits in der Nachsorge im Vergleich von Patientinnen mit Standard Nachsorge durch klinische Untersuchung, Palpation und alleiniger Mammographie bezüglich einer frühen Entdeckung eines (okkulten / nicht palpablen) lokoregionären ipsi- oder kontralateralen Rezidivs oder Zweitkarzinoms?

Kapitel Mammakarzinom und Schwangerschaft

SF Schwangerschaft 1: Welche Folgen hat die Gabe von systemischen Therapien (Chemotherapie, endokrin) bei schwangeren Patientinnen im Vergleich zur Therapie mit nur lokalen Verfahren (Operation +/- SNB) bezogen auf Quality of Life, Overall Survival, Progressionsfreies Überleben, Nebenwirkungen (auch für das Neugeborene) während und nach der Schwangerschaft?

SF Schwangerschaft 2: Haben Frauen, die nach Brustkrebs erkrankung schwanger werden ein verändertes Outcome (bezogen auf Survival (DFS, OS), QoL, Safety, Subgruppe HR+ vs HR-; Abstand der Schwangerschaft zur Brustkrebsbehandlung) als Frauen, die nicht schwanger werden?

Kapitel Mammakarzinom der älteren Patientin

Allgemeine Recherche nach aggregierter Literatur: Welche Evidenz (anhand systematischer Übersichtsarbeiten) existiert für ältere BrustkrebspatientInnen (z. B. bezüglich Therapie etc.)?
5. Methodisches Vorgehen

5.1. Überblick

5.2. Evidenzbasierung

Aus diesem Grund war es sinnvoll, bei möglichst vielen Empfehlungen das Verfahren der Leitlinienadaptation zu wählen, in dem Empfehlungen aus LL übernommen werden, die bereits im obigen systematischen Selektionsprozess erstellt wurden. Da nicht alle bekannten und gängigen LL mit der notwendigen Systematik erstellt worden sind, wurden im Vorfeld zum Kick-off Meeting in Frankfurt von den Methodikern aus
Würzburg die spezifischen LL identifiziert, welche den vorher festgelegten Ein- und Ausschlusskriterien (Tabelle 6) genügen und sich aus methodischer Sicht (AGREE II) eignen, Empfehlungen für die S3-Aktualisierung zu extrahieren. Eine genaue Darstellung dieses Vorgehens folgt im Abschnitt 4.3.

5.3. **Systematische Recherche Auswahl und Bewertung von Leitlinien**

5.3.1. **Ein- und Ausschlusskriterien**

Tabelle 6: Ein- und Ausschlusskriterien für die Recherche nach Leitlinien

<table>
<thead>
<tr>
<th>Ein- und daraus abgeleitete Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschlusskriterien</td>
</tr>
<tr>
<td>E1</td>
</tr>
<tr>
<td>E2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>E3</td>
</tr>
<tr>
<td>E4</td>
</tr>
<tr>
<td>E5</td>
</tr>
</tbody>
</table>
Ein- und daraus abgeleitete Ausschlusskriterien

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>E6</td>
<td>Es handelt sich um den Publikationstyp LL</td>
</tr>
<tr>
<td>E7</td>
<td>Publikationszeitpunkt ab November 2013</td>
</tr>
<tr>
<td>E8</td>
<td>LL ist aktuell (Überarbeitungsdatum ist nicht überschritten)</td>
</tr>
<tr>
<td>E9</td>
<td>Es handelt sich um eine Vollpublikation der LL</td>
</tr>
<tr>
<td>E10</td>
<td>Es handelt sich um eine evidenzbasierte LL (systematische Suche und Bewertung der Literatur, ggf. Bewertung mit AGREE II)</td>
</tr>
</tbody>
</table>

Ausschlusskriterien

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Leitlinie ist nicht spezifisch für die Zielgruppe</td>
</tr>
<tr>
<td>A2</td>
<td>Die Leitlinie erfüllt mindestens eine methodische Anforderung gemäß E10 (siehe oben) nicht.</td>
</tr>
<tr>
<td>A3</td>
<td>Die Leitlinie ist nicht in deutscher oder englischer Sprache verfügbar</td>
</tr>
<tr>
<td>A4</td>
<td>Die Leitlinie ist vor November 2013 publiziert</td>
</tr>
<tr>
<td>A5</td>
<td>Die Leitlinie wurde bereits in der S3-Leitlinie zur Diagnostik, Therapie und Nachsorge des Mammakarzinoms (2012) als Quell-Leitlinie zitiert</td>
</tr>
<tr>
<td>A6</td>
<td>Ein Volltext der Leitlinie ist nicht verfügbar</td>
</tr>
<tr>
<td>A7</td>
<td>Publikation ist keine Leitlinie</td>
</tr>
</tbody>
</table>

5.3.2. Recherche der Leitlinien-Datenbanken und bei Leitlinien-Anbietern sowie Suchstrategien

Es erfolgte eine Recherche in der LL-Datenbank der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF) und folgenden internationalen LL-Anbietern:

- Guidelines International Network (G-I-N)
- National Guideline Clearinghouse (NGC)
- National Institute for Health and Care Excellence (NICE)
- National Library for Health Guidelines finder (Library NHS)
- Tripdatabase, Clinical Guidelines Practice Portal (CGPP)
- New Zealand Guidelines Group (NZGG)
- Royal College of Physicians (RCP)
- Scottish Intercollegiate Guideline Network (SIGN)
Es wurde analog zum DMP Brustkrebs des IQWIG mit folgenden Suchbegriffen recherchiert:

Englische Suchbegriffe:
- breast cancer
- breast neoplasms
- breast carcinoma
- mastocarcinoma

MeSH-Terms:
- Breast neoplasms
- Mammatumoren

Deutsche Suchbegriffe:
- Brustkrebs
- Mammakarzinom

5.3.3. Selektion der Leitlinien

Identifizierung relevanter Leitlinien

Die Identifizierung relevanter LL erfolgte im ersten Schritt anhand der Einschlusskriterien E1-E9 durch 2 unabhängige Begutachter. Anschließend erfolgte die Bewertung der LL nach Domäne 3 (Rigour of Development) des AGREE II Instruments ebenfalls durch 2 unabhängige Begutachter (E10). LL wurden bei der Erfüllung von 50% dieser Domäne eingeschlossen.

Berücksichtigte Leitlinien

Die so identifizierten LL wurden anschließend den einzelnen Arbeitsgruppen nach thematischen Kriterien zur Verfügung gestellt.

Ergebnisse der Leitlinienrecherche in den Leitlinien-Datenbanken

Weitere n=8 LL wurden im Anschluss an die Recherche durch die einzelnen Arbeitsgruppen und n=2 LL durch das Methodenteam identifiziert, methodisch bewertet und bei geeigneter methodischer Qualität berücksichtigt (s. Abbildung 1).
Angewandte Suchstrategie:
E7: Publikationszeitraum ab November 2013
E6: Publikationstyp Leitlinie

Recherche in Leitlinien-Datenbanken
(01.-15.06.2015)
(n=155)

Expertenbeiträge
(01.01.-01.11.2016)
(n=8)

Ausgeschlossene Duplicaten
(n=87)

Sichtung Abstracts/Volltexte/Titel
(n=76)

Ausgeschlossene Dokumente:
A1 n=15
A4 n=24
A6 n=1
A7 n=10
Summe (n=50)

Prüfung der methodischen Anforderung
(AGREE II: Domäne 3 mind. 50%)
(n=26)

Ausgeschlossene Dokumente (n=3)
A2 n=3

Berücksichtigte Leitlinien
(n=23)
Methodische Bewertung

Tabelle 7: Ergebnis der Bewertung der methodischen Qualität mittels AGREE II

<table>
<thead>
<tr>
<th>Leitlinie</th>
<th>Domäne 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durch systematische Recherche identifizierte Leitlinien</td>
<td></td>
</tr>
<tr>
<td>10. ACR Appropriateness Criteria stage I breast cancer: initial workup and surveillance for local recurrence and distant metastases in asymptomatic women, (2014) [12]</td>
<td>90,6%</td>
</tr>
<tr>
<td>11. ASCO: Recommendations on disease management for patients with advanced human epidermal growth factor receptor-2 positive breast cancer and brain metastases (2014) [13]</td>
<td>45,8%</td>
</tr>
<tr>
<td>14. ASCO: Chemotherapy and targeted therapy for women with human epidermal growth factor receptor 2-negative (or unknown) advanced breast cancer: American Society of Clinical Oncology Clinical Practice Guideline, (2014) [16]</td>
<td>84,4%</td>
</tr>
<tr>
<td>Leitlinie</td>
<td>Domäne 3</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Durch Experten oder Methodenteam nachträglich identifizierte Leitlinien</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>ASCO: Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline, (2016) [22]</td>
</tr>
<tr>
<td>21</td>
<td>WCRF: Diet, nutrition, physical activity and breast cancer survivors, (2015) [23]</td>
</tr>
<tr>
<td>22</td>
<td>SIO: Clinical Practice Guidelines on the Use of Integrative Therapies as Supportive Care in Patients Treated for Breast Cancer , (2015) [24]</td>
</tr>
<tr>
<td>25</td>
<td>Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Supportive Therapie bei onkologischen PatientInnen-Konsultationsfassung, Langversion, 2016], AWMF Registernummer: 032-054OL [27]</td>
</tr>
</tbody>
</table>

Schließlich wurden die identifizierten LL thematisch den entsprechenden Kapiteln zugeordnet und an die Arbeitsgruppen übermittelt. Alle LL wurden zentral auf einer Daten-Cloud abgelegt und der Zugang an alle Mitwirkenden an der S3-LL verschickt.
5.4. Systematische Literaturrecherchen

Formulierung von Schlüsselfragen

Im Rahmen des Kick-off Meetings wurden Themen ausgewählt, welche nicht durch Adaption bestehender LL aktualisiert werden konnten, für jene wurden Schlüsselfragen durch das Methodenteam erstellt.

Für die Formulierung der Schlüsselfragen wurde das sogenannte PICO-Schema verwendet. Das Akronym PICO steht für folgende Begriffe:

- **P** Patient, Person oder klinisches Problem
- **I** Intervention, diagnostische, prognostische Faktoren
- **C** Vergleichstherapie (Comparison)
- **O** Endpunkte (Outcome)

Insgesamt wurden für 10 Kapitel 17 Schlüsselfragen (SF) und entsprechende PICO-Schemata erstellt, anhand welcher sich die Suchstrategie für die de novo-Recherche orientierte. Für das Kapitel der älteren Patientin wurde eine allgemeinere Recherche nach publizierter Evidenz durchgeführt, da zum einen die Recherche nach LL für ältere PatientInnen ergebnislos blieb und zum anderen alle systematischen Übersichtsarbeiten, welche Evidenz (z. B. in der Behandlung) für dieses Thema liefern recherchiert. Die vom Methodenteam in Würzburg erarbeiteten Schlüsselfragen wurden zur Kontrolle und Konsentierung an die Arbeitsgruppen versandt. Nachfolgend sind alle Schlüsselfragen nach dem Schema ’Kapitelnummer - Nummer der Schlüsselfrage (des jeweiligen Kapitels)‘ (z. B. 3.3-1) in aufsteigender Reihenfolge gelistet:

Im Anhang sind alle definierten Schlüsselfragen mit zugehörigem PICO-Schema im Abschnitt 13.2. Schlüsselfragen (inkl. PICO-Schema) zu finden.

Systematische Primärliteraturrecherche

Die Handlungsempfehlungen einer evidenzbasierten LL beruhen auf der besten verfügbaren Evidenz. Diese wird durch eine systematische Literaturrecherche identifiziert.

Für die systematische Recherche war es wichtig zu Beginn eine suchtaugliche Schlüsselfrage gemäß dem PICO-Schema zu formulieren sowie u. a. Recherchezeitraum, Publikationstypen, Suchbegriffe (MeSH, Freitext) festzulegen. Um die Suche nach Publikationstyp einzugrenzen, wurden die Suchfilter des Scottish Intercollegiate Guidelines Network (SIGN)

http://www.sign.ac.uk/methodology/filters.html [zuletzt besucht am 10.5.2016]) für Systematic Reviews, Randomised Controlled Trials und gegebenenfalls für Observational Studies angewandt (vgl. Anhang). Zusätzlich wurde die Suchstrategie mittels eines Brustkrebssuchfilters, der University of Texas (UTHealth)

(http://libguides.sph.uth.tmc.edu/search_filters/ovid_medline_filters [zuletzt besucht am: 03.05.2016]) bzw. angelehnt daran, für das Krankheitsbild Brustkrebs verfeinert. Die verwendeten Suchstrategien sind im Anhang aufgeführt.

Es wurden folgende Datenbanken verwendet:

- MEDLINE (via Ovid)
- Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CENTRAL) (via Cochrane Library)
- Database of Abstracts of Reviews of Effects (via PubMed Health/via Cochrane Library)

Für den Publikationstyp RCT wurden ergänzend folgende Register nach relevanten Studien durchsucht:

- clinicaltrials.gov
- EU Clinical Trials Register

Die Trefferlisten wurden den Arbeitsgruppen sowie dem Methodenteam zur weiteren Selektion zugesandt. Im Suchzeitraum wurden auch Studien per Handsuche durch Experten der Arbeitsgruppen identifiziert und dem Methodenteam bereitgestellt. Publikationen, die auf diese Weise identifiziert und als relevant bewertet wurden sind in der Evidenztabelle als solches gekennzeichnet (z. B. [Expertenbeitrag] oder [Beitrag des Methodenteams]).

Auswahl der Evidenz

Erstellung von Evidenztabellen

Fragenstellungen, für welche eine Primärrecherche durchgeführt wurde, sind in Tabelle 5 aufgelistet.

5.5. Schema der Evidenzklassifikation

<table>
<thead>
<tr>
<th>Level</th>
<th>Therapy / Prevention, Aetiology / Harm</th>
<th>Prognosis</th>
<th>Diagnosis</th>
<th>Differential diagnosis / symptom prevalence study</th>
<th>Economic and decision analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>SR (with homogeneity of RCTs)</td>
<td>SR (with homogeneity) of inception cohort studies; CDR validated in different populations</td>
<td>SR (with homogeneity) of Level 1 diagnostic studies; CDR* with 1b studies from different clinical centres</td>
<td>SR (with homogeneity) of prospective cohort studies</td>
<td>SR (with homogeneity) of Level 1 economic studies</td>
</tr>
<tr>
<td>1b</td>
<td>Individual RCT (with narrow Confidence Interval)</td>
<td>Individual inception cohort study with > 80% follow-up; CDR validated in a single population</td>
<td>Validating cohort study with good reference standards; or CDR tested within one clinical centre</td>
<td>Prospective cohort study with good follow-up</td>
<td>Analysis based on clinically sensible costs or alternatives; systematic review(s) of the evidence; and including multi-way sensitivity analyses</td>
</tr>
<tr>
<td>1c</td>
<td>All or none</td>
<td>All or none case-series</td>
<td>Absolute Sppins and SnNouts</td>
<td>All or none case-series</td>
<td>Absolute better-value or worse-value analyses</td>
</tr>
<tr>
<td>2a</td>
<td>SR (with homogeneity) of cohort studies</td>
<td>SR (with homogeneity) of either retrospective cohort studies or untreated control groups in RCTs</td>
<td>SR (with homogeneity) of Level >2 diagnostic studies</td>
<td>SR (with homogeneity) of 2b and better studies</td>
<td>SR (with homogeneity) of Level >2 economic Studies</td>
</tr>
</tbody>
</table>
Level 2b
<table>
<thead>
<tr>
<th>Therapy / Prevention, Aetiology / Harm</th>
<th>Prognosis</th>
<th>Diagnosis</th>
<th>Differential diagnosis / symptom prevalence study</th>
<th>Economic and decision analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual cohort study (including low quality RCT; e.g., <80% follow-up)</td>
<td>Retrospective cohort study or follow-up of untreated control patients in an RCT; Derivation of CDR or validated on split-sample only</td>
<td>Exploratory cohort study with good reference standards; CDR after derivation, or validated only on split-sample or databases</td>
<td>Retrospective cohort study, or poor follow-up</td>
<td>Analysis based on clinically sensible costs or alternatives; limited review(s) of the evidence, or single studies; and including multi-way sensitivity analyses</td>
</tr>
</tbody>
</table>

Level 2c
<table>
<thead>
<tr>
<th>“Outcomes” Research; Ecological studies</th>
<th>"Outcomes" Research</th>
<th>Ecological studies</th>
<th>Audit or outcomes Research</th>
</tr>
</thead>
</table>

Level 3a
<table>
<thead>
<tr>
<th>SR (with homogeneity) of case-control studies</th>
<th>SR (with homogeneity) of 3b and better studies</th>
<th>SR (with homogeneity*) of 3b and better studies</th>
</tr>
</thead>
</table>

Level 3b
<table>
<thead>
<tr>
<th>Individual Case-Control Study</th>
<th>Non-consecutive study; or without consistently applied reference standards</th>
<th>Non-consecutive cohort study, or very limited population</th>
<th>Analysis based on limited alternatives or costs, poor quality estimates of data, but including sensitivity analyses incorporating clinically sensible variations.</th>
</tr>
</thead>
</table>

Level 4
<table>
<thead>
<tr>
<th>Case-series (and poor quality cohort and case-control studies)</th>
<th>Case-series (and poor quality prognostic cohort studies)</th>
<th>Case-control study, poor or non-independent reference standard</th>
<th>Case-series or superseded reference standards</th>
<th>Analysis with no sensitivity analysis</th>
</tr>
</thead>
</table>
Zur Beurteilung der methodischen Qualität wurden die selektierten Artikel mit standardisierten Checklisten (SIGN) (Version 2004 bzw. 2006 für Diagnostische Studien) von einem Rater beurteilt. Entsprechend den Studientypen kamen folgende Fragebögen zum Einsatz:

- Systematische Reviews und Metaanalysen
- Randomisierte kontrollierte Studien
- Kohortenstudien
- Fall-Kontroll-Studien
- Diagnostische Studien

5.6. **Formulierung der Empfehlungen und formale Konsensusfindung**

Die Arbeitsgruppen erarbeiteten zunächst themenbezogen entsprechende Statements und Empfehlungen. In Telefonkonferenzen, in welchen immer mindestens ein Methodiker der AWMF oder des OL anwesend war, wurden diese nach den Regeln des nominalen Gruppenprozesses (siehe 5.6.2) diskutiert, falls nötig angepasst und schließlich innerhalb der AG als Vorlage für die Konsensuskonferenz verabschiedet.

Empfehlungen

Empfehlungen sind thematisch bezogene handlungsleitende Kernsätze der Leitlinie. Die Abstimmung des Empfehlungstextes und des dazugehörigen Empfehlungsgrades durch die Leitlinien-Gruppe erfolgte im Rahmen eines moderierten, formalen Konsensusverfahrens (Nominaler Gruppenprozess).

Expertenkonsens (EK)

Als EK werden Empfehlungen bezeichnet, zu denen keine ausreichende Evidenz aus Studien, Leitlinien oder anderer aggregierter Literatur gefunden werden konnte. In der Regel adressieren diese Empfehlungen Vorhabensweisen der guten klinischen Praxis, zu denen keine wissenschaftlichen Studien notwendig sind bzw. erwartet werden können.

Schema der Empfehlungsgraduierung

In der LL wird zu allen Empfehlungen zusätzlich die Stärke der Empfehlung (Empfehlungsgrad) ausgewiesen. Hinsichtlich der Stärke der Empfehlung werden in der LL drei Empfehlungsgrade unterschieden (siehe Tabelle 9), die sich auch in der Formulierung der Empfehlungen jeweils widerspiegeln.

Empfehlungen, welche nicht durch Leitlinienadaptation oder durch Primärrecherche generiert wurden, sind als Expertenkonsens (EK) ausgewiesen. Der Empfehlungsgrad ergibt sich lediglich anhand der Ausdrucksweise (soll/sollte/kann) und wird nicht explizit mit A/B/0 gekennzeichnet.

Tabelle 9: verwendete Empfehlungsgrade

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Beschreibung</th>
<th>Ausdrucksweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Starke Empfehlung</td>
<td>soll</td>
</tr>
<tr>
<td>B</td>
<td>Empfehlung</td>
<td>sollte</td>
</tr>
<tr>
<td>0</td>
<td>Empfehlung offen</td>
<td>kann</td>
</tr>
</tbody>
</table>

Statements

5.6.1. **Festlegung des Empfehlungsgrades**

Grundsätzlich erfolgte eine Anlehnung der evidenzbasierten Empfehlungen hinsichtlich ihres Empfehlungsgrades an die Stärke der verfügbaren Evidenz (siehe Abbildung 2), d.h. ein hoher Evidenzgrad (z.B. Metaanalysen/systematische Übersichten von RCTs oder mehrere methodisch hochwertige RCTs), d.h. eine hohen Sicherheit bzgl. der Ergebnisse soll in der Regel auch zu einer starken Empfehlung (Empfehlungsgrad A, „soll“) führen.

Zusätzlich wurden weitere Kriterien bei der Wahl des Empfehlungsgrades berücksichtigt. Diese folgenden berücksichtigten Kriterien konnten zu einem Abweichen der Empfehlungsstärke nach oben oder unten führen:

Konsistenz der Studienergebnisse

Bsp.: Die Effektschätzer der Studienergebnisse gehen in unterschiedliche Richtungen und zeigen keine einheitliche Tendenz.

Klinische Relevanz der Endpunkte und Effektstärken

Bsp.: Es liegen zwar Studien mit Ergebnissen in eine Richtung vor, jedoch wird die Bedeutung der gewählten Endpunkte und/oder Effektstärken als nicht relevant eingeschätzt.

Nutzen-Risiko-Verhältnis

Bsp.: Dem nachgewiesenen Nutzen einer Intervention steht ein relevanter Schadensaspekt gegenüber, der gegen eine uneingeschränkte Empfehlung spricht.

Ethische Verpflichtungen

Patientenpräferenzen

Bsp.: Eine Intervention mit nachgewiesenem Nutzen wird nicht stark empfohlen, da sie von den Patienten als belastend oder nicht praktikabel abgelehnt wird.

Anwendbarkeit, Umsetzbarkeit in der Versorgung

Bsp.: Eine Intervention mit nachgewiesenen positiven Effekten kann nicht empfohlen werden, weil sie im regionalen Versorgungssystem aus strukturellen Gründen nicht angeboten werden kann.
Methodisches Vorgehen

5.6.2. **Formale Konsensusverfahren und Konsensuskonferenz**

Bei den zwei Konsensuskonferenzen war das Plenum voll beschlußfähig, da mindestens 75% der insgesamt 33 stimmberechtigten Mandatsträger anwesend waren:

- 1. Konsensuskonferenz am 2. & 3. Dezember 2016:
 - Tag 1: 26 stimmberechtigte Mandatsträger
 - Tag 2: 27 stimmberechtigte Mandatsträger
- 2. Konsensuskonferenz am 25. März 2017
 - 32 stimmberechtigte Mandatsträger

Die Abstimmung der erarbeiteten Statements und Empfehlungen erfolgte im Plenum in Form eines nominalen Gruppenprozesses [30]:

- Vorstellung der zu konsentierenden Empfehlungen/Statements
- Gelegenheit zu Rückfragen, zur Klärung der Evidenzgrundlage durch das Plenum
- Sammlung aller und Zusammenfassung ähnlicher Kommentare durch den Moderator
- Vorabstimmung über Kommentare und Priorisierung
- Diskussion der einzelnen Punkte und ggf. Überarbeitung des Entwurfs
- endgültige Abstimmung über die Empfehlung und jede Alternative
- Wiederholung der Schritte für jede Empfehlung

Bei der ersten Konsensuskonferenz erfolgte die Abstimmung unter Moderation der erfahrenen Methodiker Frau Prof. Ina Kopp (AWMF) (Tag 1), Frau Dr. Monika Nothacker (AWMF) (Tag 2) und Dr. Markus Follmann (OL, DKG) (Tag 1 und 2). Bei der zweiten Konsensuskonferenz moderierten Frau Dr. Monika Nothacker (AWMF) und Dr. Markus Follmann (OL, DKG).

Tabelle 10: Festlegungen hinsichtlich der Konsensstärke

<table>
<thead>
<tr>
<th>Konsensstärke</th>
<th>Prozentuale Zustimmung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starker Konsens</td>
<td>> 95% der Stimmberechtigten</td>
</tr>
<tr>
<td>Konsens</td>
<td>>75 – 95% der Stimmberechtigten</td>
</tr>
<tr>
<td>Mehrheitliche Zustimmung</td>
<td>>50 – 75% der Stimmberechtigten</td>
</tr>
<tr>
<td>Dissens</td>
<td>≤50% der Stimmberechtigten</td>
</tr>
</tbody>
</table>
6. Ableitung der Qualitätsindikatoren

6.1. Zusammenfassung der Recherche

In den nachfolgend aufgeführten nationalen/internationalen QI werden u.a. als weitere, neue Themenkomplexe angesprochen:

Screening
- National Quality Measures Clearinghouse
 #National Quality Measures Clearinghouse
- Canadian Institute for Health Information
 #CIHI (Canadian Institute for Health Information)
- Cancer Quality Council of Ontario
 #CQCO (Cancer Quality Council of Ontario) Cancer System Quality Index
- National Health Services Indicators for Quality Improvement
 #NHS (National Health Services) Indicators for Quality Improvement
- National Quality Forum Performance Measures
 #NQF (National Quality Forum) Performance Measures

Erfassung Familienanamnese u genetische Beratung
- American Society of Clinical Oncology
 #ASCO (American Society of Clinical Oncology)

HER2-Positivitätsrate
- IQTIG: Angemessene Rate an HER2 positiven Befunden bei invasivem Mammakarzinom #IQTIG
- IQTIG: Verhältnis der beobachteten zur erwarteten Rate (O / E) an HER2-positiven Befunden #IQTIG
- National Quality Measures Clearinghouse
 #National Quality Measures Clearinghouse
- American Society of Clinical Oncology
 #ASCO (American Society of Clinical Oncology)
- ISD Scotland Health Indicators
 #ISD Scotland Health Indicators
- NQF Performance Measures
 #NQF (National Quality Forum) Performance Measures

R0-Resektion im Ersteingriff:
- National Quality Measures Clearinghouse: Breast cancer: the proportion of patients (invasive cancer only) who received a single (breast) operation for the primary tumour (excluding reconstruction). #National Quality Measures Clearinghouse
- IQTIG: 60659: Nachresektionsrate. Möglichst häufig Erreichen des R0-Status beim Ersteingriff #IQTIG

Zeitlicher Abstand von unter 7 Tagen zwischen Diagnose und Operation (IQTIG)
- IQTIG: #IQTIG

Verlaufdaten: DFS, OAS etc
• National Health Services Indicators for Quality Improvement
 NHS (National Health Services) Indicators for Quality Improvement

Vollständigkeit Pathologiebericht

• NQF Performance Measures
 #NQF (National Quality Forum) Performance Measures
6.2. Rechercheauftrag

Die Recherche wurde vom OL-Office (Thomas Langer) sowie aus dem Bereich Zertifizierung (Katharina Klein) zwischen dem 08.06.2017 und 20.06.2017 durchgeführt.

Als Recherchevokabular wurden folgende Begriffe verwendet:

Population:

Breast cancer, breast carcinoma, breast neoplasm, metastatic breast carcinoma, postmenopausal metastatic breast cancer, metastatic breast cancer, post-menopausal breast cancer, hormone receptor positive breast cancer, early-stage breast cancer, endocrine sensitive breast cancer, early breast cancer

Intervention:

quality/health/performance und indicator(s)/measure(s) Qualitätsindikator; Qualitätsindikatoren

Weitere Einschränkungen bezüglich spezifischer Subgruppen innerhalb der Zielpopulation erfolgten nicht.

Die Suche wurde in folgenden Quellen durchgeführt:

- Webseiten von nationalen Agenturen im Bereich medizinische Qualitätssicherung/Qualitätsmessung/Qualitätsindikatoren
- Webseiten von internationaler Agenturen im Bereich medizinische Qualitätssicherung/Qualitätsmessung/Qualitätsindikatoren
- Recherchestrategie und -vokabular richten sich nach den Möglichkeiten der jeweiligen Recherchequelle, wurden entsprechend modifiziert und unter 2 Recherchestrategien dargelegt.
6.3. Recherchestrategien

6.4. Bibliographische Datenbanken

6.4.1. PubMed (12.06.2017)

<table>
<thead>
<tr>
<th>Search</th>
<th>Query</th>
<th>Items found</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>Search ((#1) OR #2) AND #3 Filters: Publication date from 2010/01/01</td>
<td>362</td>
</tr>
<tr>
<td>#4</td>
<td>Search ((#1) OR #2) AND #3</td>
<td>624</td>
</tr>
<tr>
<td>#3</td>
<td>Search (quality indicator*[tw] or performance indicator*[tw] or health indicator*[tw] or quality measure*[tw] or performance measure*[tw] or health measure*[tw])</td>
<td>39033</td>
</tr>
<tr>
<td>#1</td>
<td>Search "breast neoplasms"[MeSH Terms]</td>
<td>250460</td>
</tr>
</tbody>
</table>

Anzahl der Treffer nach Titel- und Abstractsichtung: 102

6.4.2. Cochrane (12.06.2017)

<table>
<thead>
<tr>
<th>Search</th>
<th>Query</th>
<th>Items found</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>(breast cancer or "breast carcinoma" or "metastatic breast carcinoma" or "metastatic breast cancer" or "hormone receptor positive breast Cancer" or "endocrine sensitive breast cancer" or "postmenopausal metastatic breast cancer" or "post-menopausal breast cancer" or "early-stage breast cancer" or "advanced breast cancer"):ti (Word variations have been searched)</td>
<td>17757</td>
</tr>
<tr>
<td>#2</td>
<td>indicator or indicators or measure or measures:ti (Word variations have been searched)</td>
<td>7919</td>
</tr>
<tr>
<td>#3</td>
<td>quality or performance or health:ti (Word variations have been searched)</td>
<td>46375</td>
</tr>
<tr>
<td>#4</td>
<td>#2 and #3</td>
<td>1045</td>
</tr>
<tr>
<td>#5</td>
<td>#4 and #1 Publication Year from 2010</td>
<td>4</td>
</tr>
</tbody>
</table>

Anzahl der Treffer nach Titel- und Abstractsichtung: 0
Ableitung der Qualitätsindikatoren

<table>
<thead>
<tr>
<th>Search</th>
<th>Query</th>
<th>Items found</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>indicator or indicators or measure or measures:ti (Word variations have been searched)</td>
<td>7919</td>
</tr>
<tr>
<td>#2</td>
<td>quality or performance or health:ti (Word variations have been searched)</td>
<td>46375</td>
</tr>
<tr>
<td>#3</td>
<td>MeSH descriptor: [Breast Neoplasms] explode all trees</td>
<td>10182</td>
</tr>
<tr>
<td>#4</td>
<td>#1 and #2</td>
<td>1045</td>
</tr>
<tr>
<td>#5</td>
<td>#3 and #4 Publication Year from 2010</td>
<td>3</td>
</tr>
</tbody>
</table>

Anzahl der Treffer nach Titel- und Abstractsichtung: 0
6.5. **Nationale Qualitätsindikatorenprojekte/-programme**

<table>
<thead>
<tr>
<th>Institution</th>
<th>Quelle</th>
<th>Treffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUA-Institut</td>
<td>Internetseite zur Sektorenübergreifenden Qualitätssicherung über http://www.sqg.de/ergebnisse/leistungsbereiche/index.html</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>QISA – Qualitätsindikatorensystem für die ambulante http://www.aok-gesundheitspartner.de/bund/qisa/themen/index.html</td>
<td>0</td>
</tr>
<tr>
<td>GKV-Spitzenverband</td>
<td>Qualitätsindikatoren-Thesaurus über http://quinth.gkv-spitzenverband.de/content/suche.php; in Entwicklung oder Entwicklung abgeschlossen</td>
<td>0</td>
</tr>
<tr>
<td>GKV-Spitzenverband</td>
<td>Qualitätssicherung Medizinische Rehabilitation über http://www.qs-reha.de/indikationen/indikationen.jsp</td>
<td>0</td>
</tr>
<tr>
<td>IQTiG</td>
<td>Suchfunktion auf https://iqtig.org</td>
<td>10</td>
</tr>
<tr>
<td>KBV</td>
<td>AQUIK Ambulante Qualitätsindikatoren und Kennzahlen über http://www.kbv.de/23546.html</td>
<td>0</td>
</tr>
</tbody>
</table>

6.6. **Internationale Qualitätsindikatorenprojekte/-programme**

<table>
<thead>
<tr>
<th>Institution</th>
<th>Quelle</th>
<th>Treffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHRQ (Agency for Health Research and Quality) Quality Indicators</td>
<td>über http://www.qualityindicators.ahrq.gov/</td>
<td>0</td>
</tr>
<tr>
<td>AMA (American Medical Association)</td>
<td>Über https://www.thepcpi.org/</td>
<td>1</td>
</tr>
<tr>
<td>ASCO (American Society of Clinical Oncology) Quality Oncology Practice Initiative</td>
<td>http://gopi.asco.org/index.html QOPI® Measures & Reporting Pathways - Spring 2017</td>
<td>30</td>
</tr>
<tr>
<td>CIHI (Canadian Institute for Health Information) Health Indicators</td>
<td>http://www.cihiconferences.ca/indicators/2012/definitions12_e.html</td>
<td>1</td>
</tr>
<tr>
<td>CQCO (Cancer Quality Council of Ontario) Cancer System Quality Index – set of indicators</td>
<td>http://www.csqi.on.ca/all_indicators/#.Ulj9iW25OH4</td>
<td>4</td>
</tr>
<tr>
<td>Institution</td>
<td>Quelle</td>
<td>Treffer</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ISD Scotland Health Indicators</td>
<td>http://www.isdscotland.org/Health-Topics/Cancer/</td>
<td>12</td>
</tr>
<tr>
<td>JCAHO (Joint Commission on Accreditation of Healthcare Organizations)</td>
<td>http://www.jointcommission.org/accountability_measures.aspx</td>
<td>0</td>
</tr>
<tr>
<td>OECD Health Care Quality Indicators</td>
<td>http://www.oecd.org/health/healthpoliciesanddata/healthcarequalityindicators.htm</td>
<td>0</td>
</tr>
<tr>
<td>RAND Corporation Quality of Care Assessment Tools (QA Tools)</td>
<td>http://www.rand.org/health/surveys_tools/qatools.html</td>
<td>0</td>
</tr>
<tr>
<td>Oncoline (Niederlande)</td>
<td>http://oncoline.nl/index.php</td>
<td>0</td>
</tr>
<tr>
<td>KCE (Belgien)</td>
<td>https://kce.fgov.be/</td>
<td>0</td>
</tr>
</tbody>
</table>
6.7. Rechercheergebnisse

6.8. Nationale Qualitätsindikatoren

6.8.1. AQUA-Institut

Siehe Kapitel 0

6.8.2. IQTIG

Mammachirurgie Indikatoren 2016

https://iqtig.org/ergebnisse qs-verfahren/18n1/

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>51846: Prätherapeutische histologische Diagnosesicherung</td>
<td>Bestehender QI</td>
</tr>
<tr>
<td>Möglichst viele Patientinnen mit prätherapeutischer histologischer Sicherung durch Stanz- oder Vakuumbiopsie bei Primärerkrankung invasives Mammakarzinom oder DCIS und Ersteingriff Zähler Patientinnen mit prätherapeutischer histologischer Diagnosesicherung durch Stanz- oder Vakuumbiopsie Nenner Alle Patientinnen mit Ersteingriff bei Primärerkrankung und Histologie „invasives Mammakarzinom (Primärtumor)“ oder „DCIS“</td>
<td></td>
</tr>
<tr>
<td>HER2-Positivitätsrate</td>
<td>(ja)</td>
</tr>
<tr>
<td>Angemessene Rate an HER2 positiven Befunden bei invasivem Mammakarzinom</td>
<td></td>
</tr>
<tr>
<td>52268: HER2-Positivitätsrate</td>
<td></td>
</tr>
<tr>
<td>Zähler</td>
<td></td>
</tr>
<tr>
<td>Patientinnen mit positivem HER2-Status</td>
<td></td>
</tr>
<tr>
<td>Nenner</td>
<td></td>
</tr>
<tr>
<td>Alle Patientinnen mit Primärerkrankung und Histologie „Invasives Mammakarzinom (Primärtumor)“ und abgeschlossener operativer Therapie und bekannten HER2-Status</td>
<td></td>
</tr>
<tr>
<td>52273: Verhältnis der beobachteten zur erwarteten Rate (O / E) an HER2-positiven Befunden Zähler Patientinnen mit positivem HER2-Status Nenner</td>
<td></td>
</tr>
<tr>
<td>Indikator</td>
<td>Starke Empfehlung im update der S3-LL</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Alle Patientinnen mit Primärerkrankung und Histologie „invasives Mammakarzinom (Primärtumor)“ und abgeschlossener operativer Therapie und bekanntem HER2-Status</td>
<td>Bestehender QI</td>
</tr>
<tr>
<td>Intraoperative Präparatradiografie oder intraoperative Präparatsonografie bei Drahtmarkierung</td>
<td></td>
</tr>
<tr>
<td>Möglichst viele Eingriffe mit intraoperatoriver Präparatradiografie oder intraoperatoriver Präparatsonografie nach präoperatoriver Drahtmarkierung durch Mammografie oder nach präoperatoriver Drahtmarkierung durch Sonografie</td>
<td></td>
</tr>
<tr>
<td>52330: Intraoperative Präparatradiografie oder intraoperative Präparatsonografie bei mammografischer Drahtmarkierung</td>
<td></td>
</tr>
<tr>
<td>Zähler</td>
<td></td>
</tr>
<tr>
<td>Operationen mit intraoperatoriver Präparatradiografie oder intraoperatoriver Präparatsonografie</td>
<td></td>
</tr>
<tr>
<td>Nenner</td>
<td></td>
</tr>
<tr>
<td>Alle Operationen mit präoperatoriver Drahtmarkierung gesteuert durch Mammografie</td>
<td></td>
</tr>
<tr>
<td>52279: Intraoperative Präparatradiografie oder intraoperative Präparatsonografie bei sonografischer Drahtmarkierung</td>
<td></td>
</tr>
<tr>
<td>Zähler</td>
<td></td>
</tr>
<tr>
<td>Operationen mit intraoperatoriver Präparatradiografie oder intraoperatoriver Präparatsonografie</td>
<td></td>
</tr>
<tr>
<td>Nenner</td>
<td></td>
</tr>
<tr>
<td>Alle Operationen mit präoperatoriver Drahtmarkierung gesteuert durch Sonografie</td>
<td></td>
</tr>
<tr>
<td>2163: Primäre Axilladissektion bei DCIS</td>
<td>Ja. Siehe Liste bestehende QI´s</td>
</tr>
<tr>
<td>Möglichst wenige Patientinnen mit primärer Axilladissektion bei DCIS</td>
<td></td>
</tr>
<tr>
<td>Zähler</td>
<td></td>
</tr>
<tr>
<td>Patientinnen mit primärer Axilladissektion</td>
<td></td>
</tr>
<tr>
<td>Nenner</td>
<td></td>
</tr>
<tr>
<td>Alle Patientinnen mit Histologie „DCIS“ und abgeschlossener operativer Therapie bei Primärerkrankung und ohne präoperative tumorspezifische Therapie unter Ausschluss von Patientinnen mit präoperatoriver Histologie „invasives Mammakarzinom“</td>
<td></td>
</tr>
</tbody>
</table>
Ableitung der Qualitätsindikatoren

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>50719: Lymphknotenentnahme bei DCIS und brusterhaltender Therapie</td>
<td>Bestehender QI (siehe Liste)</td>
</tr>
<tr>
<td>Möglichst wenige Patientinnen mit axillärer Lymphknotenentnahme bei DCIS und brusterhaltender Therapie</td>
<td></td>
</tr>
<tr>
<td>Zähler</td>
<td></td>
</tr>
<tr>
<td>Patientinnen mit axillärer Lymphknotenentnahme</td>
<td></td>
</tr>
<tr>
<td>Nenner</td>
<td></td>
</tr>
<tr>
<td>Alle Patientinnen mit Histologie „DCIS“ und abgeschlossener operativer Therapie bei Primärerkrankung, brusterhaltender Therapie und ohne präoperative tumorspezifische Therapie unter Ausschluss von Patientinnen mit präoperativer Histologie „invasives Mammakarzinom“</td>
<td></td>
</tr>
<tr>
<td>51847: Indikation zur Sentinel-Lymphknoten-Biopsie</td>
<td>Bestehender QI (siehe Liste)</td>
</tr>
<tr>
<td>Möglichst viele Patientinnen mit Sentinel-Lymphknoten-Biopsie (SLNB) und ohne Axilladissektion bei lymphknotennegativem (pN0) invasivem Mammakarzinom</td>
<td></td>
</tr>
<tr>
<td>Zähler</td>
<td></td>
</tr>
<tr>
<td>Patientinnen mit Sentinel-Lymphknoten-Biopsie und ohne Axilladissektion</td>
<td></td>
</tr>
<tr>
<td>Nenner</td>
<td></td>
</tr>
<tr>
<td>Alle Patientinnen mit Primärerkrankung invasives Mammakarzinom, negativem pN-Staging, abgeschlossener operativer Therapie und ohne präoperative tumorspezifische Therapie</td>
<td></td>
</tr>
<tr>
<td>51370: Zeitlicher Abstand von unter 7 Tagen zwischen Diagnose und Operation</td>
<td>Nein</td>
</tr>
<tr>
<td>Möglichst viele Patientinnen mit angemessenem zeitlichen Abstand zwischen prätherapeutischer histologischer Diagnose und Operationsdatum bei Ersteingriff</td>
<td></td>
</tr>
<tr>
<td>Zähler</td>
<td></td>
</tr>
<tr>
<td>Patientinnen mit einem zeitlichen Abstand von unter 7 Tagen zwischen Diagnose und Operation</td>
<td></td>
</tr>
<tr>
<td>Nenner</td>
<td></td>
</tr>
<tr>
<td>Alle Patientinnen mit Ersteingriff und maligner Neoplasie (einschließlich DCIS) als Primärerkrankung und mit prätherapeutischer histologischer Diagnosesicherung und ohne präoperative tumorspezifische Therapie</td>
<td></td>
</tr>
</tbody>
</table>
Indikator

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>60659: Nachresektionsrate</td>
<td>Nein</td>
</tr>
<tr>
<td>Möglichkeit häufig Erreichen des R0-Status beim Ersteingriff</td>
<td></td>
</tr>
<tr>
<td>Zähler</td>
<td></td>
</tr>
<tr>
<td>Anzahl der Patientinnen mit Nachresektion pro Brust ≥ 1</td>
<td></td>
</tr>
<tr>
<td>Nenner</td>
<td></td>
</tr>
<tr>
<td>Alle Patientinnen mit Primärerkrankung mit invasivem Mammakarzinom (fn_invasivesMammaCa) oder DCIS, abgeschlossener primär-operativer Therapie und R0-Resektion</td>
<td></td>
</tr>
</tbody>
</table>
6.9. Internationale Qualitätsindikatoren

6.9.1. National Quality Measures Clearinghouse

https://www.qualitymeasures.ahrq.gov/search?q=quality+measures+breast+cancer

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer: the proportion of patients with invasive breast cancer not greater than 3 cm (total size, including DCIS component) who underwent BCT. NQMC:007409, European Society of Breast Cancer Specialists</td>
<td>Ja.</td>
</tr>
<tr>
<td>Breast cancer: the proportion of patients with invasive breast cancer (M0) who received post-operative radiotherapy after surgical resection of the primary tumour and appropriate axillary staging/surgery in the framework of BCT. NQMC:007408, European Society of Breast Cancer Specialists</td>
<td>Siehe bestehende QI</td>
</tr>
<tr>
<td>Breast cancer: the proportion of patients with invasive breast cancer with pN0 who do not undergo axillary clearance. NQMC:007410, European Society of Breast Cancer Specialists</td>
<td>Siehe bestehende QI</td>
</tr>
<tr>
<td>Breast cancer: the proportion of patients (invasive cancer only) who received a single (breast) operation for the primary tumour (excluding reconstruction). NQMC:007405, European Society of Breast Cancer Specialists</td>
<td>Nein</td>
</tr>
<tr>
<td>Breast cancer screening: percentage of women 50 to 74 years of age who had a mammogram to screen for breast cancer. NQMC:010929, National Committee for Quality Assurance</td>
<td>Auswertung Mx-Screening bei Koop.gemeinschaft.</td>
</tr>
<tr>
<td>Breast cancer: the proportion of non-invasive cancer cases for which the following prognostic/predictive parameters have been recorded: dominant histologic pattern; size in mm (best pathology or radiology estimate if 2 stage pathology); grading (according to EU Guidelines); and distance to nearest radial margin. NQMC:007404, European Society of Breast Cancer Specialists</td>
<td>Ja</td>
</tr>
<tr>
<td>Breast cancer: the proportion of invasive cancer cases with primary surgery, for which the following prognostic/predictive parameters have been recorded: histological type; grading (according to EU guidelines); ER & PgR; HER 2; pathological stage (T and N); size in mm for the invasive component; peritumoral vascular invasion; and distance to nearest radial margin.</td>
<td>Ja</td>
</tr>
<tr>
<td>Indikator</td>
<td>Starke Empfehlung im update der S3-LL</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>NQMC:007403, European Society of Breast Cancer Specialists</td>
<td></td>
</tr>
<tr>
<td>Breast cancer: the proportion of patients with invasive cancer and axillary clearance performed who had at least 10 lymph nodes examined.</td>
<td>Nein</td>
</tr>
<tr>
<td>NQMC:007407, European Society of Breast Cancer Specialists</td>
<td></td>
</tr>
<tr>
<td>Breast cancer: the proportion of patients with endocrine sensitive invasive carcinoma who received hormonotherapy.</td>
<td>Ja. Siehe bestehende QI</td>
</tr>
<tr>
<td>NQMC:007413, European Society of Breast Cancer Specialists</td>
<td></td>
</tr>
<tr>
<td>Breast cancer: proportion of patients with malignant diagnoses in the definitive pathology report.</td>
<td>Nien</td>
</tr>
<tr>
<td>NQMC:007401, European Society of Breast Cancer Specialists</td>
<td></td>
</tr>
<tr>
<td>Breast cancer: the proportion of patients with ER- (T > 1 cm or Node+) invasive carcinoma who received adjuvant chemotherapy.</td>
<td>Ja. Siehe bestehende QI</td>
</tr>
<tr>
<td>NQMC:007414, European Society of Breast Cancer Specialists</td>
<td></td>
</tr>
<tr>
<td>Breast cancer: the proportion of patients with N+ or N- T > 1 cm HER2+ (IHC 3+ or FISH+) invasive carcinoma treated with chemotherapy and who had adjuvant trastuzumab.</td>
<td>Ja. Siehe bestehende QI</td>
</tr>
<tr>
<td>NQMC:007415, European Society of Breast Cancer Specialists</td>
<td></td>
</tr>
<tr>
<td>Breast cancer: the proportion of patients with DCIS who do not undergo axillary clearance.</td>
<td>Ja. Siehe bestehende QI</td>
</tr>
<tr>
<td>NQMC:007411, European Society of Breast Cancer Specialists</td>
<td></td>
</tr>
<tr>
<td>Breast cancer: the proportion of patients (DCIS only) who received just one operation (excluding reconstruction).</td>
<td>Nein</td>
</tr>
<tr>
<td>NQMC:007406, European Society of Breast Cancer Specialists</td>
<td></td>
</tr>
<tr>
<td>Oncology: percentage of female patients aged 18 years and older with Stage IC through IIIC, estrogen receptor (ER) or progesterone receptor (PR) positive breast cancer who were prescribed tamoxifen or aromatase inhibitor (AI) during the 12 month reporting period.</td>
<td>Ja. Siehe bestehende QI</td>
</tr>
<tr>
<td>NQMC:010472, American Society for Radiation Oncology; American Society of Clinical Oncology; Physician Consortium for Performance Improvement*</td>
<td></td>
</tr>
<tr>
<td>Preventive services for adults: percentage of female patients ages 50 to 74 years who have screening for breast cancer every two years.</td>
<td>Auswertung Mx-Screening bei Koop.gemeinschaft.</td>
</tr>
<tr>
<td>NQMC:009973, Institute for Clinical Systems Improvement</td>
<td></td>
</tr>
<tr>
<td>Indikator</td>
<td>Starke Empfehlung im update der S3-LL</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Oncology: percentage of patients, regardless of age, with a diagnosis of breast, rectal, pancreatic or lung cancer receiving 3D conformal radiation therapy who had documentation in medical record that radiation dose limits to normal tissues were established prior to the initiation of a course of 3D conformal radiation for a minimum of two tissues.</td>
<td>Nein</td>
</tr>
<tr>
<td>NQMC:010736, American Society for Radiation Oncology</td>
<td></td>
</tr>
<tr>
<td>Imaging efficiency: percentage of patients with mammography screening studies that are followed by a diagnostic mammography, ultrasound or MRI of the breast in an outpatient or office setting within 45 days.</td>
<td>Auswertung Mx-Screening bei Koop.gemeinschaft.</td>
</tr>
<tr>
<td>NQMC:011009, Centers for Medicare & Medicaid Services</td>
<td></td>
</tr>
<tr>
<td>Cancer screening: percentage of women aged 51 to 74 years who have had at least one mammogram performed during the measurement year or the year prior to the measurement year.</td>
<td>Auswertung Mx-Screening bei Koop.gemeinschaft.</td>
</tr>
<tr>
<td>NQMC:010671, The Israel National Program for Quality Indicators in Community Healthcare</td>
<td></td>
</tr>
<tr>
<td>Diagnostic imaging: fraction of all screening mammograms that are interpreted as positive (abnormal) and have a tissue diagnosis of cancer within 12 months.</td>
<td>Auswertung Mx-Screening bei Koop.gemeinschaft.</td>
</tr>
<tr>
<td>NQMC:010224, American College of Radiology</td>
<td></td>
</tr>
<tr>
<td>Diagnostic imaging: fraction of all screening mammograms that are interpreted as positive (abnormal) and have a tissue diagnosis of invasive cancer within 12 months.</td>
<td>Auswertung Mx-Screening bei Koop.gemeinschaft.</td>
</tr>
<tr>
<td>NQMC:010225, American College of Radiology</td>
<td></td>
</tr>
<tr>
<td>Diagnostic imaging: percentage of patients undergoing a screening mammogram whose information is entered into a reminder system with a target due date for the next mammogram.</td>
<td>Auswertung Mx-Screening bei Koop.gemeinschaft.</td>
</tr>
<tr>
<td>NQMC:010203, American College of Radiology; National Committee for Quality Assurance; Physician Consortium for Performance Improvement*</td>
<td></td>
</tr>
<tr>
<td>Diagnostic imaging: percentage of screening mammograms interpreted as positive (abnormal).</td>
<td>Auswertung Mx-Screening bei Koop.gemeinschaft.</td>
</tr>
<tr>
<td>NQMC:010226, American College of Radiology</td>
<td></td>
</tr>
</tbody>
</table>
6.9.2. AMA (American Medical Association)

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure #2: Hormonal Therapy for Stage IC-IIIC Estrogen Receptor/Progesterone Receptor (ER/PR) Positive Breast Cancer</td>
<td>Ja. Siehe bestehende QI</td>
</tr>
</tbody>
</table>

6.9.3. ASCO (American Society of Clinical Oncology)

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR49: Complete family history documented for patients with invasive breast cancer (defect-free measure, EOL49a - EOL49c)</td>
<td>Nein. “Sollte”-Empfehlung</td>
</tr>
<tr>
<td>BR49a: Presence or absence of cancer in first-degree blood relatives documented</td>
<td></td>
</tr>
<tr>
<td>BR49b: Presence or absence of cancer in second-degree blood relatives documented</td>
<td></td>
</tr>
<tr>
<td>BR49c: Age at diagnosis documented for each blood relative noted with cancer</td>
<td></td>
</tr>
<tr>
<td>BR50: Percentage of patients with invasive breast cancer with positive family history of breast cancer (Test Measure)</td>
<td></td>
</tr>
<tr>
<td>BR50a: Percentage of patients with invasive breast cancer tested or referred for genetic testing (Test Measure)</td>
<td></td>
</tr>
<tr>
<td>BR51: Genetic testing addressed appropriately for patients with invasive breast cancer (defect-free measure, CORE51a-CORE51c (Test Measure)</td>
<td></td>
</tr>
<tr>
<td>BR51a: Genetic counseling, referral for counseling, or genetic testing for patients with invasive breast cancer with increased hereditary risk of breast cancer (Test Measure)</td>
<td></td>
</tr>
<tr>
<td>Indikator</td>
<td>Starke Empfehlung im update der S3-LL</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>BR51b: Patient consent for genetic testing ordered by the practice for patients with invasive breast cancer (Test Measure)</td>
<td></td>
</tr>
<tr>
<td>BR51c: Patient with invasive breast cancer counseled, or referred for counseling, to discuss results following genetic testing (Test Measure)</td>
<td></td>
</tr>
<tr>
<td>BR52: Combination chemotherapy recommended within 4 months of diagnosis for women unter 70 with AJCC stage IA (T1c) and IB-III ER/PR negative breast cancer*</td>
<td>(Ja) siehe bestehende QI</td>
</tr>
<tr>
<td>BR52a: Complete staging for women with invasive breast cancer (Cancer stage, HER2, and ER/PR status)</td>
<td></td>
</tr>
<tr>
<td>BR53: Combination chemotherapy received within 4 months of diagnosis by women unter 70 with AJCC stage IA (T1c) and IB-III ER/PR negative breast cancer*</td>
<td>(Ja) siehe bestehende QI</td>
</tr>
<tr>
<td>BR54: Test for Her-2/neu overexpression or gene amplification*</td>
<td>Ja</td>
</tr>
<tr>
<td>BR55: Trastuzumab recommended for patients with AJCC stage I (T1c) to III Her-2/neu positive breast cancer</td>
<td>Ja siehe bestehende QI</td>
</tr>
<tr>
<td>BR56: Trastuzumab received when Her-2/neu is negative or undocumented (lower Score – Better)</td>
<td>Nein</td>
</tr>
<tr>
<td>BR56a: Trastuzumab not received when Her-2/neu is negative or undocumented (inverse of 56)*</td>
<td>Nein</td>
</tr>
<tr>
<td>BR57: Trastuzumab received by patients with AJCC IA (T1c) and IB-III Her-2/neu positive breast cancer *</td>
<td>Ja siehe bestehende QI</td>
</tr>
<tr>
<td>BR58: Tamoxifen or AI recommended within AJCC stage IA (T1c) and IB-III ER or PR positive breast cancer</td>
<td>Ja siehe bestehende QI</td>
</tr>
<tr>
<td>BR59: Tamoxifen or AI received within 1 year of diagnosis by patients with AJCC stage IA (T1c) and IB-III ER or PR positive breast cancer*</td>
<td>Ja siehe bestehende QI</td>
</tr>
<tr>
<td>BR60: Tamoxifen or AI received when ER/PR status is negative or undocumented (Lower Score – Better)</td>
<td>Nein</td>
</tr>
<tr>
<td>Indikator</td>
<td>Starke Empfehlung im update der S3-LL</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>BR61: IV bisphosphonates or denosumab administered for breast cancer bone metastases</td>
<td>Sollte-Empfehlung</td>
</tr>
<tr>
<td>BR62: Renal function assessed prior to the first administration of IV bisphosphonates or denosumab</td>
<td>Nein</td>
</tr>
<tr>
<td>BR62a1: PET, CT, or radionuclide bone scan ordered by practice within 60 days after diagnosis to stage I, IIA, or IIB breast cancer (Lower Score – Better) (Top 5 Measure)</td>
<td>(Nein)</td>
</tr>
<tr>
<td>BR62a2: PET, CT, or radionuclide bone scan ordered outside of practice within 60 days after diagnosis to stage I, IIA or IIB breast cancer (Lower Score – Better) (Top 5 Measure)</td>
<td>(Nein)</td>
</tr>
<tr>
<td>BR62b1: PET, CT, or radionuclide bone scan ordered by practice between day 61 and day 365 after diagnosis of breast cancer in patients who received treatment with curative intent (Lower Score – Better) (Top5)</td>
<td>(Nein)</td>
</tr>
<tr>
<td>BR62b2: PET, CT, or radionucleotide bone scan ordered outside of practice between day 61 and day 365 after diagnosis of breast cancer in patients who received treatment with curative intent (Lower Score – Better) (Top 5 Measure)</td>
<td>(Nein)</td>
</tr>
<tr>
<td>BR62c1: Serum tumor marker surveillance ordered by practice between 30 days and 365 days after diagnosis of breast cancer in patients who received treatment with curative intent for breast cancer (Lower Score – Better) (Top5 Measure)</td>
<td>(Nein)</td>
</tr>
<tr>
<td>BR62c2: Serum tumor marker surveillance ordered outside of practice between 30 days and 365 days after diagnosis of breast cancer in patients who received treatment with curative intent for breast cancer (Lower Score – Better) (Top 5 Test Measure)</td>
<td>(Nein)</td>
</tr>
<tr>
<td>BR62d: GCSF administered to patients who received chemotherapy for metastatic breast cancer (Lower Score – Better) (Top 5 Test Measure)</td>
<td>Viele (in der LL Supportiv Therape)</td>
</tr>
</tbody>
</table>
6.9.4. CIHI (Canadian Institute for Health Information)

http://www.statcan.gc.ca/pub/82-221-x/2012002/def/def3-eng.htm#aces3sm

Indikator	Starke Empfehlung im update der S3-LL
1. Mammography |
2. Note: this indicator was changed in June 2009 to include all reasons for mammography because the questionnaire does not allow a specific reason to be associated with the most recent mammogram. Most reasons provided in the response categories however are associated with screening
3. Women aged 50 to 69 who reported when they had their last mammogram within the last 2 years for routine screening or other reasons.
4. Screening mammography is an important strategy for early detection of breast cancer.

6.9.5. CQCO (Cancer Quality Council of Ontario) Cancer System Quality Index

Indikator	Starke Empfehlung im update der S3-LL
Breast Cancer Screening Quality and Efficiency | Auswertung Mx-Screening bei Koop.gemeinschaft.
Percentage of women with an abnormal OBSP screening mammogram result, 50-74 years old, who were diagnosed with breast cancer (DCIS or invasive)
Calculations for the indicator
(Total number of screen-eligible women, 50-74 years old, who had an abnormal OBSP screening mammogram result, who were diagnosed with a screen-detected breast cancer (DCIS or invasive/ Total number of screen-eligible women, 50-74 years old, who had an abnormal OBSP screening mammogram) x 100= Abnormal follow-up
http://www.csqi.on.ca/by_patient_journey/screening/breast-screening_quality_and_efficiency/technical_info/

Breast Cancer Screening Participation | Auswertung Mx-Screening bei Koop.gemeinschaft.
Age-adjusted percentage of Ontario screen-eligible women, 50-74 years old, who completed at least one mammogram within a 30-month period
<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculations for the indicator</td>
<td></td>
</tr>
<tr>
<td>(Total number of Ontario screen-eligible women, 50-74 years old, who have completed at least one mammogram in a given 30-month period/ Total number of Ontario screen-eligible women, 50-74 years old in the reporting period) x 100 = Mammmogram participation</td>
<td></td>
</tr>
<tr>
<td>http://www.csqi.on.ca/by_patient_journey/screening/breast_screening_participation/technical_info/</td>
<td></td>
</tr>
<tr>
<td>Breast Cancer Screening Follow-Up</td>
<td>Auswertung Mx-Screening bei Koop.gemeinschaft.</td>
</tr>
<tr>
<td>Percentage of Ontario screen-eligible women with an abnormal OBSP screening mammogram result, 50-74 years old, who were diagnosed (benign or cancer) within the recommended time interval:</td>
<td></td>
</tr>
<tr>
<td>• ≤5 weeks without tissue biopsy, OR</td>
<td></td>
</tr>
<tr>
<td>• ≤7 weeks with tissue biopsy</td>
<td></td>
</tr>
<tr>
<td>Calculations for the Indicator</td>
<td></td>
</tr>
<tr>
<td>(Total number of screen-eligible women with an abnormal OBSP screening mammogram result, 50-74 years old, who were diagnosed within the recommended time interval/ Total number of screen-eligible women, 50-74 years old, with an abnormal OBSP screening mammogram result) x 100 = Abnormal follow-up</td>
<td></td>
</tr>
<tr>
<td>http://www.csqi.on.ca/by_patient_journey/screening/breast_screening_follow_up/technical_info/</td>
<td></td>
</tr>
<tr>
<td>Survivorship Care</td>
<td></td>
</tr>
<tr>
<td>Percentage of patients with mammogram tests in the first (13-24 months from diagnosis), second (25-36 months from diagnosis) and third (37-48 months from diagnosis) follow-up years, for breast cancer patients diagnosed in 2011, by regional cancer centre of referral or consult.</td>
<td></td>
</tr>
<tr>
<td>Calculations for the Indicator</td>
<td></td>
</tr>
<tr>
<td>[(# of breast cancer patients referred or treated at an RCC that have mammogram tests 13 to 24 months from diagnosis)/(# of breast cancer patients diagnosed in 2011 that were referred or treated at an RCC)]x100 = mammogramutilization in 1st follow up year (%)</td>
<td></td>
</tr>
<tr>
<td>[# of breast cancer patients referred or treated at an RCC that have mammogram tests 25 to 36 months</td>
<td></td>
</tr>
<tr>
<td>6.37. a.) Die bildgebende Diagnostik zur Detektion von lokal- und lokoregionären Rezidiven und kontralateralen Karzinomen sollte die jährliche Mammographie und qualitätsgesicherte Sonographie umfassen.</td>
<td></td>
</tr>
</tbody>
</table>
Ableitung der Qualitätsindikatoren

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>from diagnosis)/(# of breast cancer patients diagnosed in 2011 that were referred or treated at an RCC)]x100 = mammogramutilization in 2nd follow up year (%)</td>
<td></td>
</tr>
<tr>
<td>[(# of breast cancer patients referred or treated at an RCC that have mammogram tests 37 to 48 months from diagnosis)/(# of breast cancer patients diagnosed in 2011 that were referred or treated at an RCC)]x100 = mammogramutilization in 3rd follow up year (%)</td>
<td></td>
</tr>
<tr>
<td>http://www.csqi.on.ca/by_patient_journey/recovery/survivorship_care/technical_info/</td>
<td></td>
</tr>
</tbody>
</table>

6.9.6. ISD Scotland Health Indicators

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPI1: Non Operative Diagnosis: Patients with breast cancer should have a non-operative histological diagnosis.</td>
<td>Bestehender QI</td>
</tr>
<tr>
<td>Diagnosis of patients non operatively allows them, where possible, to have only one definitive procedure. However, it may not always be technically possible to undertake a biopsy and patient choice may also be a factor.</td>
<td></td>
</tr>
<tr>
<td>Numerator: Number of patients with a non-operative diagnosis of breast cancer (core biopsy / large volume biopsy).</td>
<td></td>
</tr>
<tr>
<td>Denominator: All patients with invasive or in-situ breast cancer.</td>
<td></td>
</tr>
</tbody>
</table>

QPI2: Pre-Operative Assessment of Axilla(i): patients with breast cancer should have pre-operative ultrasound assessment of the axilla.	4.3 b.) Das Ziel einer standardisiert durchgeführten Mammasonographie ist die systematische und reproduzierbare Durchuntersuchung der Brustdrüse und der Axilla. Die Befunde sollen reproduzierbar dokumentiert werden.
A pre-operative diagnosis of nodal disease enables definitive treatment of axilla at the time of initial breast surgery. However, some patients may refuse investigation and/or treatment.	
Numerator: Number of patients with invasive breast cancer who undergo assessment of the axilla by ultrasound before surgery.	
Denominator: All patients with invasive breast cancer undergoing surgery.	
Indikator

<table>
<thead>
<tr>
<th>QPI2: Pre-Operative Assessment of Axilla(ii):</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>patients with breast cancer whose pre-operative ultrasound assessment of the axilla found suspicious morphology should undergo FNA/core biopsy.</td>
<td>4.20 b.) Es sollen alle entsprechenden Patientinnen mit oder ohne vorausgegangene primäre Systemtherapie über die Möglichkeit der brusterhaltenden Therapie (BET) und der Mastektomie mit der Option einer primären oder sekundären Rekonstruktion aufgeklärt werden.</td>
</tr>
<tr>
<td>Patients with invasive breast cancer should undergo pre-treatment ultrasound assessment of the axilla and if morphologically suspicious nodes are identified these should be sampled using FNA or core biopsy. However, FNA/core biopsy of the axilla is not always technically possible.</td>
<td></td>
</tr>
<tr>
<td>Numerator: Number of patients with invasive breast cancer with suspicious morphology on ultrasound who undergo an FNA/core biopsy.</td>
<td></td>
</tr>
<tr>
<td>Denominator: All patients with invasive breast cancer undergoing surgery with suspicious morphology reported on ultrasound.</td>
<td></td>
</tr>
</tbody>
</table>

Indikator

<table>
<thead>
<tr>
<th>QPI3: Conservation rate:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>patients with small breast cancers should undergo breast conservation whenever appropriate.</td>
<td>4.20 a.) Ziel der operativen Therapie ist die Tumorentfernung im Gesunden. Dabei ist eine brusterhaltende Therapie (BET) mit nachfolgender Radiotherapie der gesamten Brust bezüglich des Überlebens der alleinigen Mastektomie gleichwertig.</td>
</tr>
<tr>
<td>Breast conservation is appropriate for small breast cancers; randomised trials have shown no difference in survival for tumours treated by conservation surgery followed by radiotherapy to mastectomy.</td>
<td></td>
</tr>
<tr>
<td>Breast conservation may not be appropriate for all patients for a variety of reasons including patient choice and genetic risk.</td>
<td></td>
</tr>
<tr>
<td>Numerator: Number of surgically treated patients with breast cancer less than 20mm whole tumour size on histology (invasive plus in situ disease) treated by breast conservation surgery.</td>
<td></td>
</tr>
<tr>
<td>Denominator: All surgically treated patients with breast cancer less than 20mm whole tumour size on histology (invasive plus in situ disease).</td>
<td></td>
</tr>
</tbody>
</table>

Indikator

<table>
<thead>
<tr>
<th>QPI4: Surgical margins:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancers which are surgically treated should be adequately excised.</td>
<td></td>
</tr>
<tr>
<td>There is an increased risk of local recurrence if radial surgical excision margins are less than 1mm after breast cancer surgery.</td>
<td></td>
</tr>
<tr>
<td>Numerator: Number of patients with breast cancer (invasive or ductal carcinoma in situ) having breast conservation surgery with final radial (i.e. superior, inferior, medial or</td>
<td></td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019
<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>lateral) excision margins less than 1mm (on pathology report). Denominator: All patients with breast (invasive or ductal carcinoma in situ) cancer having breast conservation surgery.</td>
<td></td>
</tr>
<tr>
<td>QPI5: Immediate Reconstruction Rate: Patients undergoing mastectomy for breast cancer should have access to immediate breast reconstruction. Evidence suggests that breast reconstruction is not associated with an increase in the rate of local recurrence, nor does it affect the ability to detect recurrence and it can yield psychological benefit. Access to immediate breast reconstruction is difficult to measure so uptake is used as a proxy. Patient choice is a key factor in the number who undergo immediate breast reconstruction. Age and co-morbidity factors (associated with deprivation category) should be taken into account when reviewing data for this QPI. Numerator: Number of patients with breast cancer undergoing immediate breast reconstruction at the time of mastectomy. Denominator: All patients with breast cancer undergoing mastectomy.</td>
<td>4.20 b.) Es sollen alle entsprechende Patientinnen mit oder ohne vorausgegangene primäre Systemtherapie über die Möglichkeit der brusterhaltenden Therapie (BET) und der Mastektomie mit der Option einer primären oder sekundären Rekonstruktion aufgeklärt werden.</td>
</tr>
<tr>
<td>QPI6: Negative Axillary Clearance Rate: Over treatment of the axilla should be minimised. Surgical axillary clearance is associated with increased arm morbidity compared with other surgical staging procedures and should therefore not be utilised unless there is evidence of nodal metastatic disease. Numerator: Number of patients with breast cancer undergoing surgical axillary clearance found to have no nodal metastasis (including nodes taken at any previous sampling procedure). Denominator: All patients with breast cancer undergoing surgical axillary clearance.</td>
<td>Siehe bestehende QI</td>
</tr>
<tr>
<td>QPI7: Minimising Hospital Stay – “23 Hour” Surgery: Patients should have the opportunity for a maximum of 1 overnight stay following surgery wherever appropriate. It is safe to perform wide excision and axillary staging as a short stay procedure in the majority of patients & clinical quality has been shown to be improved utilising this model, resulting in better patient outcomes. Benefits of short stay</td>
<td>Nein</td>
</tr>
<tr>
<td>Indikator</td>
<td>Starke Empfehlung im update der S3-LL</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Include reduction in readmissions, reduction in complications, improved patient mobility and enhanced recovery. However, it is not always appropriate for all patients due to social circumstances, co-morbidities and/or geographical residence. Numerator: Number of patients with breast cancer undergoing wide excision and/or axillary sampling procedure (sentinel node biopsy or node sample (≥4 nodes)) with a maximum hospital stay of 1 night following their procedure. Denominator: All patients with breast cancer undergoing wide excision and/or axillary sampling procedure (sentinel node biopsy or node sample (≥4 nodes)).</td>
<td></td>
</tr>
<tr>
<td>QPI8: HER2 Status for Decision Making: HER2 status should be available to inform treatment decision making. HER2 status has a significant impact on survival and so has a significant influence on decisions on neoadjuvant and adjuvant treatment. However, it is not always possible to undertake IHC on a core biopsy e.g. due to tumour size. Numerator: Number of patients with invasive breast cancer for whom the HER2 status (as defined by IHC) is known at initial MDT meeting to decide first treatment. Denominator: All patients with invasive breast cancer.</td>
<td></td>
</tr>
<tr>
<td>QPI9: Radiotherapy for Breast Conservation: After wide local excision patients with breast cancer should receive radiotherapy. Trials have demonstrated a significant reduction in local recurrence with the use of radiotherapy after breast conservation. Patient choice and fitness for treatment will have an effect on uptake. Numerator: Number of patients with invasive breast cancer having conservation surgery receiving radiotherapy to the breast. Denominator: All patients with invasive breast cancer having conservation surgery.</td>
<td>Siehe bestehende QI</td>
</tr>
<tr>
<td>QPI10: Adjuvant chemotherapy: patients with higher risk breast cancer should receive chemotherapy post operatively. Clinical trials have demonstrated that adjuvant drug treatments substantially reduce 5-year recurrence rates and</td>
<td>Nein</td>
</tr>
</tbody>
</table>
6. Ableitung der Qualitätsindikatoren

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-year mortality rates. However, it may not always be undertaken due to factors such as patient choice, co-morbidities and fitness for treatment.
Numerator: Number of patients between 50 and 70 years of age at diagnosis with surgically proven node positive or at least G3 >20mm breast cancer who receive adjuvant chemotherapy.
Denominator: All patients between 50 and 70 years of age at diagnosis with surgically proven node positive or at least G3 >20mm breast cancer.</td>
<td></td>
</tr>
<tr>
<td>QPI11: Anti-HER2 Positive Therapy: Patients with HER2 positive intermediate or high risk breast cancer should receive anti-HER2 positive therapy.
Women with intermediate or high risk disease who are HER2 positive show benefit when they receive trastuzumab in addition to chemotherapy. However, uptake will be influenced by factors such as patient choice, co-morbidities and fitness for treatment.
Numerator: Number of patients with breast cancer who are between 50 and 70 years of age at diagnosis with HER2 positive (by 3+ on IHC &/or FISH +ve) tumours >10mm (or ≤10mm and node positive) who receive adjuvant anti-HER2 positive therapy.
Denominator: All patients with breast cancer who are between 50 and 70 years of age at diagnosis with HER2 positive (by 3+ on IHC &/or FISH +ve) tumours >10mm (or ≤10mm and node positive).</td>
<td>Siehe bestehende QI</td>
</tr>
</tbody>
</table>

6.9.7. **NHS (National Health Services) Indicators for Quality Improvement**

https://indicators.hscic.gov.uk/webview/

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast screening programme coverage: percent, 53-64 years, annual, F</td>
<td>Siehe Auswertung Mx-Screening Programm</td>
</tr>
<tr>
<td>Survival following diagnosis of breast cancer: one year age-standardized net survival rate (%), 15-99 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Indikator</td>
<td>Starke Empfehlung im update der S3-LL</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Survival following diagnosis of breast cancer: five year age-standardized net survival rate (%), 15-99 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Incidence of breast cancer: directly standardized rate, all ages, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Incidence of breast cancer: directly standardized rate, <75 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Incidence of breast cancer: directly standardized rate, all ages, annual trend, F</td>
<td></td>
</tr>
<tr>
<td>Incidence of breast cancer: indirectly standardized ratio, all ages, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Incidence of breast cancer: indirectly standardised ratio, <75 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Incidence of breast cancer: indirectly standardised ratio, all ages, annual trend, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: crude death rate, by age group, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: directly standardised rate, all ages, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: directly standardised rate, <75 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: directly standardised rate, 50-64 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: directly standardised rate, 50-69 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: traditionally standardised rate, all ages, annual trend, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: directly standardised rate, 50-69 years, annual trend, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: number, by age group, annual, F</td>
<td></td>
</tr>
</tbody>
</table>
Ableitung der Qualitätsindikatoren

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality from breast cancer: indirectly standardised ratio (SMR), all ages, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: indirectly standardised ratio (SMR), <75 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: indirectly standardised ratio (SMR), 50-64 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: indirectly standardised ratio (SMR), 50-69 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: indirectly standardised ratio (SMR), all ages, annual trend, F</td>
<td></td>
</tr>
<tr>
<td>Mortality from breast cancer: indirectly standardised ratio (SMR), 50-69 years, annual trend, F</td>
<td></td>
</tr>
<tr>
<td>Years of life lost due to mortality from breast cancer: crude rate, 1-74 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Years of life lost due to mortality from breast cancer: directly standardised rate, 1-74 years, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Deaths at home from breast cancer: indirectly standardised rate, all ages, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Deaths at home from breast cancer: percent, all ages, 3-year average, F</td>
<td></td>
</tr>
<tr>
<td>Breast screening programme coverage: percent, 53-70 years, annual, F</td>
<td></td>
</tr>
</tbody>
</table>

6.9.8. NQF (National Quality Forum) Performance Measures
http://www.qualityforum.org

<table>
<thead>
<tr>
<th>Indikator</th>
<th>Starke Empfehlung im update der S3-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0220: Adjuvant hormonal therapy Percentage of female patients, age >18 at diagnosis, who have their first diagnosis of breast cancer (epithelial malignancy), at AJCC stage T1cN0M0,IB to III, who´s primary tumor is progesterone or estrogen receptor positive</td>
<td>Siehe vorhergehende QI</td>
</tr>
<tr>
<td>Indikator</td>
<td>Starke Empfehlung im update der S3-LL</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>with tamoxifen or third generation aromatase inhibitor (recommended or administered) within 1 year (365 days) of diagnosis.</td>
<td></td>
</tr>
<tr>
<td>0623: History of Breast Cancer – Cancer Surveillance</td>
<td></td>
</tr>
<tr>
<td>The percentage of women with a history of breast cancer treated with curative intent who had breast cancer surveillance for local regional recurrence (LRR) annually.</td>
<td></td>
</tr>
<tr>
<td>0031: Breast Cancer Screening</td>
<td></td>
</tr>
<tr>
<td>Percentage of women 40-69 years of age who had a mammogram to screen for breast cancer</td>
<td></td>
</tr>
<tr>
<td>2372: Breast Cancer Screening</td>
<td></td>
</tr>
<tr>
<td>The percentage of women 50-74 years of age who had a mammogram to screen for breast cancer.</td>
<td></td>
</tr>
<tr>
<td>0319: Breast Cancer Resection Pathology Reporting- pT category (primary tumor) and pN category (regional lymph nodes) with histologic grade</td>
<td></td>
</tr>
<tr>
<td>Percentage of breast cancer resection pathology reports that include the pT category (primary tumor), the pN category (regional lymph nodes) and the histologic grade.</td>
<td></td>
</tr>
<tr>
<td>0387: Breast Cancer: Hormonal Therapy for Stage I (T1b)-IIIC Estrogen Receptor/Progesterone Receptor (ER/PR) Positive Breast Cancer</td>
<td></td>
</tr>
<tr>
<td>Percentage of female patients aged 18 years and older with Stage I (T1b) through IIIC, ER or PR positive breast cancer who were prescribed tamoxifen or aromatase inhibitor (AI) during the 12-month reporting period</td>
<td></td>
</tr>
<tr>
<td>0559: Combination chemotherapy is recommended or administered within 4 months (120 days) of diagnosis for women under 70 with AJCC T1cN0M0, or Stage IB - III hormone receptor negative breast cancer.</td>
<td></td>
</tr>
<tr>
<td>Percentage of female patients, age >18 at diagnosis, who have their first diagnosis of breast cancer (epithelial malignancy), at AJCC stage T1cN0M0 (tumor greater than 1 cm), or Stage IB -III, whose primary tumor is progesterone and estrogen receptor negative recommended for multiagent chemotherapy (recommended or administered) within 4 months (120 days) of diagnosis.</td>
<td></td>
</tr>
<tr>
<td>Indikator</td>
<td>Starke Empfehlung im update der S3-LL</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>0508: Diagnostic Imaging: Inappropriate Use of “Probably Benign” Assessment Category in Screening Mammograms</td>
<td>Percentage of final reports for screening mammograms that are classified as “probably benign”</td>
</tr>
<tr>
<td>0509: Diagnostic Imaging: Reminder System for Screening Mammograms</td>
<td>Percentage of patients undergoing a screening mammogram whose information is entered into a reminder system with a target due date for the next mammogram</td>
</tr>
<tr>
<td>1857: HER2 negative or undocumented breast cancer patients spared treatment with HER2-targeted therapies</td>
<td>Proportion of female patients (aged 18 years and older) with breast cancer who are human epidermal growth factor receptor 2 (HER2)/neu negative who are not administered HER2-targeted therapies</td>
</tr>
<tr>
<td>1878: HER2 testing for overexpression or gene amplification in patients with breast cancer</td>
<td>Proportion of female patients (aged 18 years and older) with breast cancer who receive human epidermal growth factor receptor 2 (HER2) testing for overexpression or gene amplification</td>
</tr>
<tr>
<td>0221: Needle biopsy to establish diagnosis of cancer precedes surgical excision/resection</td>
<td>Percentage of patients presenting with AJCC Stage Group 0, I, II, or III disease, who undergo a needle biopsy to establish diagnosis of breast cancer.</td>
</tr>
<tr>
<td>0222: Patients with early stage breast cancer who have evaluation of the axilla</td>
<td>Percentage of women with Stage I-IIb breast cancer that received either axillary node dissection or Sentinel Lymph Node Biopsy (SLNB) at the time of surgery (lumpectomy or mastectomy)</td>
</tr>
<tr>
<td>1857: Percentage of women with Stage I-IIb breast cancer that received either axillary node dissection or Sentinel Lymph Node Biopsy (SLNB) at the time of surgery (lumpectomy or mastectomy)</td>
<td></td>
</tr>
<tr>
<td>Indikator</td>
<td>Starke Empfehlung im update der S3-LL</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Percentage of adult patients (aged 18 or over) with invasive breast cancer that is HER2/neu positive who are administered trastuzumab</td>
<td></td>
</tr>
</tbody>
</table>
6.10. Identifizierte Publikationen zu Qualitätsindikatoren

[31-132]

Entsprechend dem Manual „Entwicklung von Empfehlungen im Rahmen der Initiative Gemeinsam Klug Entscheiden“ wurden an alle starken Empfehlungen, die nicht als Qualitätsindikatoren ausgewählt worden waren, folgende Kriterien schriftlich anhand einer Vierer-Skala (Ja, Eher Ja, Eher Nein, Nein) bewertet:

<table>
<thead>
<tr>
<th>Bewertungskriterien</th>
<th>Ja</th>
<th>Eher Ja</th>
<th>Eher Nein</th>
<th>Nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Die Empfehlungsinhalte sind eindeutig definiert?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Es liegen Versorgungsdaten oder ein begründeter Expertenkonsens für das Vorliegen eines relevanten Versorgungsproblems in Hinblick auf Über- oder Un tersorgung vor?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Die Empfehlung bezieht sich auf einen Versorgungsaspekt, der beeinflusst werden kann?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Bei der Umsetzung sind keine Risiken zur Fehlsteuerung bekannt, die nicht korrigierbar sind?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aus 12 Empfehlungen wurde durch die LeitlinienautorInnen in der QI Gruppe drei ausgewählt aufgrund der Bewertung jedes Kriteriums mit ja/eher ja >75%)

Kapitel 4.2.3. Diagnostische Sicherung

Bei neu diagnostiziertem Mammakarzinom und dem klinischen Verdacht auf Metastasen soll ein bildgebendes Staging erfolgen. Konsens EG A/B, LoE 2a

In Ergänzung zu sehen: Das Ganzkörperstaging sollte nur durchgeführt werden bei Frauen mit höherem Metastasierungsrisiko (N+, > T2) und/oder aggressiver Tumorbio logie (z.B.: Her2+, triple-negativ), klinischen Zeichen, Symptomen und bei geplanter Entscheidung zur systemischen Chemo-/Antikörpertherapie. Das Ganzkörperstaging sollte mittels CT-Thorax/Abdomen und Skelettszintigraphie erfolgen. Konsens

Die Gruppe hat hier eine vermutlich vorliegende Überversorgung diskutiert.
Kapitel 4.7.7 Beeinflussbare Lebensstilfaktoren:
Empfehlungen zu Bewegungstherapie und körperliche Aktivität, Körpergewicht und Ernährung und Vermeidbare Noxen (Rauchen).

Patientinnen sollen zu körperlicher Aktivität und zur Normalisierung des Körpergewichts (bei erhöhtem BMI) motiviert werden. Hilfestellungen sollten vermittelt werden. Insbesondere wird empfohlen:

a) körperliche Inaktivität zu vermeiden und so früh wie möglich nach der Diagnosestellung zu normaler Alltagsaktivität zurück zu kehren (LoE 2a)

b) das Ziel 150 min moderater oder 75 min anstrengender körperlicher Aktivität pro Woche zu erreichen (LoE 1a)

Starker Konsens, EG A, LoE 2a/1a

Empfehlung zu Körpergewicht

Patientinnen sollen beraten werden, (a) ein gesundes Körpergewicht zu erreichen und zu halten und (b) im Falle von Übergewicht oder Adipositas die Zufuhr von hochkalorischen Lebensmitteln und Getränken zu limitieren und körperliche Aktivität zu steigern, um einen moderaten Gewichtsverlust zu fördern und diesen langfristig zu halten. Starker Konsens, EG A, LoE LL-Adap.

Empfehlung zur Ernährung

Patientinnen sollen beraten werden, ein Ernährungsmuster zu erreichen und einzuhalten, welches reich an Gemüse, Obst, Vollkorngetreide und Hülsenfrüchten ist, sowie wenig gesättigte Fette enthält und in der Alkoholzufuhr limitiert ist.

Starker Konsens, EG A, LoE LL-Adap.

Empfehlung zu vermeidbaren Noxen:

Patientinnen sollen dahingehend beraten werden, nicht zu rauchen, ggfs. sollen Raucherinnen Entwöhnungsprogramme empfohlen werden.

Starker Konsens, EG A, LoE 2a

In Abstimmung mit der QI Gruppe wurden mit Unterstützung durch das ÄZQ zwei laienverständliche Versionen erstellt, die auf der AWMF-Seite der Leitlinie heruntergeladen werden können (Link).

8. Reviewverfahren und Verabschiedung

Den beiden Konsensuskonferenzen folgten mehrere Reviewverfahren, in denen Langfassung, Leitlinienreport und Evidenztabellen überprüft wurden. Die Empfehlungen und Statements, die in den Konferenzen diskutiert und abgestimmt wurden sowie die Hintergrundtexte wurden zunächst durch das Leitliniensekretariat in den Gesamttext eingearbeitet und den AGs zur Kontrolle vorgestellt.

um Überprüfung und Zustimmung gebeten. (Reviewverfahren durch die Fachgesellschaften).

Parallel zur öffentlichen Konsultationsphase erfolgte eine rein redaktionelle und sprachliche Überarbeitung durch das Leitlinienbüro und einzelne Mitarbeiter der Leitliniengruppe.

<table>
<thead>
<tr>
<th>Nr</th>
<th>ID</th>
<th>Kapitel /Seite</th>
<th>Entwurfstext der Leitlinie</th>
<th>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</th>
<th>Begründung (mit Literaturangaben)</th>
<th>Vorschlag zum Umgang mit Kommentar</th>
<th>Konsentierte Entscheidung</th>
<th>Begründung der Entscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>Kap. 4.6 Empf. 4.40. S. 144</td>
<td>Die postoperative Radiotherapie der Brustwand nach Mastektomie senkt das Risiko eines lokoregionären Rezidivs und verbessert das Gesamtüberleben bei Patienten nach einer primär systemischen Therapie.</td>
<td>Die Radiotherapie der Brustwand sollte in konventioneller Fraktionierung (Gesamtdosis ca. 50 Gy in ca. 25-28 Fraktionen in 5-6 Wochen) mit oder ohne Boost erfolgen. Da in den START A und B Trial das hypofraktionierte Schema auch für Patienten nach Mastektomie angewendet wurde, sollte die Dosierung für die PMRT explizit erwähnt werden. Bei 14% (START A) und 8% (START B) der Patientinnen, die eine hypofraktionierte Bestrahlung der Brustwand erhalten haben, kam es zu einem Lokalrezidiv.</td>
<td>Rückkoppelung an AG</td>
<td>Konsens AG: Keine Änderung! Es gibt keinen vernünftigen Grund anzunehmen, dass die Hypofraktionierung im Bereich der Brustwand ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>ID</td>
<td>Kapitel /Seite</td>
<td>Entwurfstext der Leitlinie</td>
<td>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</td>
<td>Begründung (mit Literaturangaben)</td>
<td>Vorschlag zum Umgang mit Kommentar</td>
<td>Konsentierte Entscheidung</td>
<td>Begründung der Entscheidung</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----------------</td>
<td>---------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>Kap. 4.2.</td>
<td>b.) Die Durchführung einer prätherapeutischen KM-MRT bei einem</td>
<td>b.) Die Durchführung einer prätherapeutischen KM-MRT bei einem diagnostizierten</td>
<td>Der die Mammografie, Ultraschall und Stanzbiopsie durchführende Radiologe</td>
<td>Rückkoppelung an AG</td>
<td>Konsens AG: Keine Änderung!</td>
<td>Bei der Eingabe zu den prätherapeutisc</td>
</tr>
<tr>
<td>Nr</td>
<td>ID</td>
<td>Kapitel /Seite</td>
<td>Entwurfstext der Leitlinie</td>
<td>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</td>
<td>Begründung (mit Literaturangaben)</td>
<td>Vorschlag zum Umgang mit Kommentar</td>
<td>Konsentierte Entscheidung</td>
<td>Begründung der Entscheidung</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>

a.) Die bildgebende Diagnostik zur Detektion von lokal- und lokoregionären Rezidiven und kontralateralen Karzinomen sollte die jährliche Mammographie und qualitätsgesicherte Sonographie umfassen. a.) Die bildgebende Diagnostik zur Detektion von lokal- und lokoregionären Rezidiven und kontralateralen Karzinomen sollte die jährliche, ggf. halbjährliche Mammographie und qualitätsgesicherte Sonographie, ggf. auch MRT (Hochrisiko Pt.) umfassen, abhängig vom Carcinomtyp, Ribelles et al. BCR 2013, vgl. AGO Rückkoppelung an AG Konsens AG: Keine Änderung! Die Literatur rechtfertigt keine Änderung.
<table>
<thead>
<tr>
<th>Nr</th>
<th>ID</th>
<th>Kapitel/Seite</th>
<th>Entwurfstext der Leitlinie</th>
<th>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</th>
<th>Begründung (mit Literaturangaben)</th>
<th>Vorschlag zum Umgang mit Kommentar</th>
<th>Konsentierte Entscheidung</th>
<th>Begründung der Entscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
<td>Kap. 5.4.3.4. Empf. 5.32. S. 231</td>
<td>Bei Vorliegen von Lebermetastasen kann in Einzelfällen eine Resektion oder eventuell auch eine andere locale Therapie (RFA, TACE, SBRT) indiziert sein, Voraussetzungen dafür sind:</td>
<td>Bei Vorliegen von Lebermetastasen kann in Einzelfällen eine Resektion oder eventuell auch eine andere locale oder lokoregionäre Therapie (RFA, SBRT, SIRT) indiziert sein, Voraussetzungen dafür sind:</td>
<td>Für den Werkzeugkasten Lebermetastasierung müsste die Yttrium-90-Radioembolisation (SIRT) ergänzt werden, die Datenlage bezieht sich hier primär auf die chemorefraktäre Situation (PMID: 27461588, PMID: 26742710, PMID: 26169362 und PMID: 22836160); hervorzuheben sind hier die hohen Ansprechraten, demonstriert zum Beispiel durch Saxena und auch Gordon et al. 2014 (PMID: 24337647 und auch PMID: 25156827). Die Chemoembolisation spielt demgegenüber bei Mammakarzinom keine Rolle, uns ist nicht bekannt, dass es hierzu eine Datenlage gibt.</td>
<td>Rückkoppelung an AG</td>
<td>Konsens AG: Änderung annehmen, aber TACE beibehalten: Bei Vorliegen von Lebermetastasen kann in Einzelfällen eine Resektion oder eventuell auch eine andere lokale oder lokoregionäre Therapie (RFA, TACE, SBRT, SIRT) indiziert sein, Voraussetzungen dafür sind:</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>ID</td>
<td>Kapitel /Seite</td>
<td>Entwurfstext der Leitlinie</td>
<td>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</td>
<td>Begründung (mit Literaturangaben)</td>
<td>Vorschlag zum Umgang mit Kommentar</td>
<td>Konsentierte Entscheidung</td>
<td>Begründung der Entscheidung</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Nr.</td>
<td>ID</td>
<td>Kapitel /Seite</td>
<td>Entwurfstext der Leitlinie</td>
<td>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</td>
<td>Begründung (mit Literaturangaben)</td>
<td>Vorschlag zum Umgang mit Kommentar</td>
<td>Konsentierte Entscheidung</td>
<td>Begründung der Entscheidung</td>
</tr>
<tr>
<td>-----</td>
<td>----</td>
<td>----------------</td>
<td>---------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>Kap. 4.4.5. Empf. 4.23. h) S. 94</td>
<td>h.) Bei Patientinnen, die eine primär systemische Therapie (PST) erhalten und prätherapeutisch einen stanzbioptisch positiven (pN1) und nach der PST einen klinisch negativen Nodalstatus aufweisen (ycN0), sollte eine Axilladissektion erfolgen.</td>
<td>…stanzbioptisch positiven (cN1)…</td>
<td>Die Bedingungen für eine pN-Klassifikation sind nicht gegeben.</td>
<td>Rückkopplung an AG</td>
<td>Konsens AG: Änderung annehmen: h.) Bei Patientinnen, die eine primär systemische Therapie (PST) erhalten und prätherapeutisch einen stanzbioptisch positiven (cN1) und nach der PST einen klinisch negativen Nodalstatus aufweisen (ycN0), sollte eine Axilladissektion erfolgen.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>Kap. 4.5.4. Empf. 4.29. b) S. 112</td>
<td>b.) Resektionsrandstatus (R-Klassifikation gemäß aktueller TNM-Klassifikation, derzeit 8. Auflage [422]) und Sicherheitsabstände)</td>
<td>/</td>
<td>Es sei betont, dass die R-Klassifikation nicht nur den Status des Resektionsrandes beschreibt, sondern die Tumorsituation nach Behandlung. Bei Fernmetastasen kann ein Mammakarzinom lokal im gesunden entfernt worden sein, der Status ist trotzdem als R2 zu klassifizieren.</td>
<td>Rückkopplung an AG</td>
<td>Konsens AG: Keine Änderung!</td>
<td>Gilt gemäß TNM-Klassifikation (8. Auflage) nicht nur für das Mammakarzinom; keine gesonderte Darstellung in der S3-Leitlinie Mammakarzinom erforderlich.</td>
</tr>
<tr>
<td>Nr</td>
<td>ID</td>
<td>Kapitel/Seite</td>
<td>Entwurfstext der Leitlinie</td>
<td>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</td>
<td>Begründung (mit Literaturangaben)</td>
<td>Vorschlag zum Umgang mit Kommentar</td>
<td>Konsentierte Entscheidung</td>
<td>Begründung der Entscheidung</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>---------------</td>
<td>---------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
</tbody>
</table>
| 11 | 12 | Kap. 4.6. Empf. 4.41. S. 144 | Bei folgenden Situationen soll die Strahlentherapie der Brustwand nach Mastektomie indiziert werden:
- T4
... | cT4 oder pT4 angeben | Das sollte klargestellt werden, ob es sich nur um cT4 handelt oder auch um pT4 (am besten mit Angabe von pT4a, pT4b, pT4c, pT4d) | Rückkoppelung an AG | Konsens AG: Ändern T4 in pT4 |
| 12 | 12 | Kap. 4.6. Empf. 4.42. S. 146 | Nach primärer (neoadjuvanter) systemischer Therapie soll sich die Indikation zur Postmastektomie-Radiotherapie am prätherapeutischen klinischen Stadium
...pCR (ypT0pN0)... | Vor das pN0 wird nicht nochmal extra ein "y" gesetzt. Siehe auch Seite 149 oben | Rückkoppelung an AG | Konsens AG: Änderung annehmen:
Nach primärer (neoadjuvanter) systemischer Therapie soll sich die Indikation zur Postmastektomie-...
<table>
<thead>
<tr>
<th>Nr</th>
<th>ID</th>
<th>Kapitel /Seite</th>
<th>Entwurfstext der Leitlinie</th>
<th>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</th>
<th>Begründung (mit Literaturangaben)</th>
<th>Vorschlag zum Umgang mit Kommentar</th>
<th>Konsensierte Entscheidung</th>
<th>Begründung der Entscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>12</td>
<td>Kap. 4.6. Empf. 4.44. a) S. 148</td>
<td>orientieren; bei pCR (ypT0 ypN0) soll die Indikation im interdisziplinären Tumorboard abhängig vom Risikoprofil festgelegt werden.</td>
<td>… Patientinnen mit pN0 oder pN1 mi...</td>
<td>Gängige Nomenklatur der UICC TNM</td>
<td>Rückkoppelung an AG</td>
<td>Konsens AG: Änderung annehmen: a.) Die Bestrahlung der supra-/infra-/inklavikulären Lymphknoten kann bei Patientinnen mit pN0 oder pN1mi in folgender Situation erfolgen, sofern die folgenden Bedingungen alle erfüllt sind: Prämenopausal und zentraler oder medialer Sitz und G2-3 und ER/PgR-negativ.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>Kap. 4.6.</td>
<td>a.) Die Bestrahlung der A. mammaria interna</td>
<td>… mit axillärer pN0 oder pN1 mi-Patientinnen ...</td>
<td>Gängige Nomenklatur</td>
<td>Rückkoppelung an AG</td>
<td>Konsens AG:</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>ID</td>
<td>Kapitel /Seite</td>
<td>Entwurfstext der Leitlinie</td>
<td>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</td>
<td>Begründung (mit Literaturangaben)</td>
<td>Vorschlag zum Umgang mit Kommentar</td>
<td>Konsentierte Entscheidung</td>
<td>Begründung der Entscheidung</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empf. 4.45. a) S. 149</td>
<td>Lymphknoten kann bei axillär pN0- oder axillär pN1mic-Patientinnen in folgender Situation erfolgen:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Änderung annehmen: a.) Die Bestrahlung der A. mammaria interna Lymphknoten kann bei axillär pN0- oder axillär pN1mi-Patientinnen in folgender Situation erfolgen:</td>
</tr>
</tbody>
</table>
| 15 | 15 | Kap. 5.4.2. Empf. 5.24. a) S. 210 | a.) Bei Indikation zu einer Chemotherapie sollten Patientinnen ohne hohen Remissionsdruck eine sequentielle Chemotherapie erhalten. | Chemotherapie durch „Mono-Chemotherapie“ ersetzen | Rückkopplung an AG
Konsens AG:
Keine Änderung! |
| 16 | 18 | Kap. 3.3.1. Empf. 3.18.a) S. 57 | · Die Mastektomie hat keinen Vorteil im Vergleich zur brusterhaltenden Operation. | Besser: Die Mastektomie hat keinen Überlebensvorteil im Vergleich zur BET. | Rückkopplung an AG
Konsens AG:
Änderung annehmen:
Die Mastektomie hat keinen Überlebensvorteil im Vergleich zur brusterhaltenden Therapie. |
<table>
<thead>
<tr>
<th>Nr</th>
<th>ID</th>
<th>Kapitel /Seite</th>
<th>Entwurfstext der Leitlinie</th>
<th>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</th>
<th>Begründung (mit Literaturangaben)</th>
<th>Vorschlag zum Umgang mit Kommentar</th>
<th>Konsentierte Entscheidung</th>
<th>Begründung der Entscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>18</td>
<td>Kap. 3.3.1. Empf. 3.21. S. 60</td>
<td>· Bei Patientinnen mit einer pathogenen BRCA1- oder BRCA2-Genmutation führt die prophylaktische Adnexitomie zu einer Reduktion der Brustkrebs spezifischen Mortalität und des Gesamtüberlebens.</td>
<td>Besser: zu einer Erhöhung des Gesamtüberlebens.</td>
<td></td>
<td>Rückkoppelung an AG</td>
<td>Konsens AG: Änderung annehmen:</td>
<td>Bei Patientinnen mit einer pathogenen BRCA1- oder BRCA2-Genmutation führt die prophylaktische Adnexitomie zu einer Reduktion der Brustkrebs spezifischen Mortalität und zu einer Erhöhung des Gesamtüberlebens.</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>Kap. 4.6 Empf. 4.47. S. 154</td>
<td>Die Radiotherapie des Lymphabflusses soll in konventioneller Fraktionierung (5x wöchentlich 1,8 Gy bis 2,0 Gy, Gesamtdosis ca. 50 Gy in ca. 5-6 Wochen) oder kann in Hypofraktionierung (Gesamtdosis ca. 40 Gy in ca. 15-16 Fraktionen in ca. 3 bis 5 Wochen) erfolgen.</td>
<td>Die Radiotherapie des Lymphabflusses sollte in konventioneller Fraktionierung (5x wöchentlich 1,8 Gy bis 2,0 Gy, Gesamtdosis ca. 50 Gy in ca. 5-6 Wochen) oder kann in Hypofraktionierung (Gesamtdosis ca. 40 Gy in ca. 15-16 Fraktionen in ca. 3 bis 5 Wochen) erfolgen.</td>
<td>Das abgestimmte Statement mit „soll“ in konventioneller Fraktionierung erfolgen schließt ein „kann“ für die Hypofraktionierung eigentlich aus. Aus einer Sicht muss es wie bei den anderen Statements zur Fraktionierung „sollte“ und „kann“ heißen</td>
<td>Rückkoppelung an AG</td>
<td>Konsens AG: Änderung annehmen:</td>
<td>Die Radiotherapie des Lymphabflusses sollte in konventioneller Fraktionierung (5x wöchentlich 1,8 Gy bis 2,0 Gy, Gesamtdosis ca. 50 Gy in ca. 5-6 Wochen) oder kann in Hypofraktionierung (Gesamtdosis ca. 40 Gy in ca. 15-16 Fraktionen in ca. 3 bis 5 Wochen) erfolgen.</td>
</tr>
<tr>
<td>Nr</td>
<td>ID</td>
<td>Kapitel /Seite</td>
<td>Entwurfstext der Leitlinie</td>
<td>Vorgeschlagene Änderung des Kommentierenden oder Statement dazu</td>
<td>Begründung (mit Literaturangaben)</td>
<td>Vorschlag zum Umgang mit Kommentar</td>
<td>Konsentierte Entscheidung</td>
<td>Begründung der Entscheidung</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----------------</td>
<td>--------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>19</td>
<td>26</td>
<td>Kap. 4.6 Empf. 4.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Die Bestrahlung der supra/infraklavikulären Lymphknoten sollte bei Patientinnen mit 1-3 befallenen Lymphknoten in folgenden Situationen erfolgen:
 - zentraler oder medialer Sitz und (G2-3 oder ER/PgR-negativ)
 - prämenopausal, lateraler Sitz und (G2-3 oder ER/PgR-negativ)
| | | | b.) Die Bestrahlung der supra/infraklavikulären Lymphknoten sollte bei Patientinnen mit 1-3 befallenen Lymphknoten in folgenden Situationen erfolgen:
 - G2-3 oder ER/PgR-negativ
 - prämenopausal, lateraler Sitz und (G2-3 oder ER/PgR-negativ)
| | | | Wird im Freitext selbst gegeben mit Quellenangabe.
S. 152
„Bei Patientinnen mit 1-3 befallenen axillären Lymphknoten bei denen zusätzliche Risikofaktoren aufweisen liegt die supraklavikuläre Rückfallrate ohne Strahlentherapie mit 9,6 % (G2 mit 2 positiven Lymphknoten oder G3 mit 1 positiven Lymphknoten) bzw. 21 % (G3 mit 2-3 positiven Lymphknoten oder G2 mit 3 positiven Lymphknoten) ebenfalls so hoch, dass auch eine alleinige Bestrahlung der supra- und infraklavikulären Lymphknoten sinnvoll ist“ | Konsens AG:
Keine Änderung!
Rückkoppelung an AG | Die retrospektiven Daten von Yates sind nicht dazu geeignet das Statement zu ändern. |

<table>
<thead>
<tr>
<th>Nr</th>
<th>ID</th>
<th>Kapitel /Seite</th>
<th>Entwurftext der Leitlinie</th>
<th>Vorgeschlagene Änderung</th>
<th>Begründung (mit Literaturangaben)</th>
<th>Vorschlag zum Umgang mit Kommentar</th>
<th>Konsentierte Entscheidung</th>
<th>Begründung der Entscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>· speziellen Fragestellungen/Zusatzuntersuchungen</td>
<td>· speziellen Fragestellungen/Zusatzuntersuchungen</td>
<td>Block. Bei Auffälligkeiten wird jeder Pathologe von sich aus Extrablöcke aus den jeweiligen Arealen entnehmen. Die Begründung für dieses Vorgehen liefert die Leitlinie selbst (s.o.). Außerdem verursachen unnötige Blöcke unnötige Kosten.</td>
<td>den 4 Quadranten (mind. Je 1 Block) · speziellen Fragestellungen/Zusatzuntersuchungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die Mindestangabe von einem Block pro Quadrant kann man, wenn man den UK guidelines folgen will, fallen lassen, denn dort gibt es für die zusätzlichen Entnahmen aus den Quadranten immer den Zusatz („wenn es die Ressourcen erlauben“). Dann müsste man ergänzen, dass diese Entnahmen nur optional sind. Andererseits werden durch die zusätzlichen Entnahmen in einer mastopathischen Brust gelegentlich okkulte DCIS-Ausläufer oder...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tumorfoci entdeckt, die dann auch die Entscheidung zur Mastektomie unterstützen. Ich denke, dass daher die 4 Kapseln, die hier bisher gefordert wurden, zu vertreten sind.

| 2 | 2 | Kap. 4.5.2.1. S.99 | Die Gewebefixation erfolgt in 10%igem neutral gepuffertem Formalin. Empfohlen wird eine Fixationsdauer zwischen 6 h und 72 h. | Die Gewebefixation erfolgt in 5%igem neutral gepuffertem Formalin. | Wir kennen kein pathologisches Institut, dass 10%iges Formalin verwendet. Möglicherweise Verwechslung mit dem Begriff Formaldehyd. | Rückkopplung an AG | Konsens AG: Keine Änderung! |

| 3 | 4 | Kap. 4.5.2.1. S.99 | Die Gewebefixation erfolgt in 10%igem neutral gepuffertem Formalin. Empfohlen wird eine Fixationsdauer zwischen 6 h und 72 h. | Änderung auf mindestens 4%... in ausreichender Menge | Änderung der Gefahrstoffbewertung von Formalin zum 01.01.2016
Verordnung zum Schutz vor Gefahrstoffen Gefahrstoffverordnung (GefStoffV) § 10 Besondere Schutzmaßnahmen bei Tätigkeiten mit krebs erzeugenden, Keimzellmutagenen und reproduktionstoxischen Gefahrstoffen der Kategorie 1A und 1B

Nicht die Konzentration alleine ist ein Faktor für eine genügende Fixierung, sondern v.a. auch die Menge der zugegebenen Formaldehydlösung. | Rückkopplung an AG | Konsens AG: Die Gewebefixation erfolgt in 10%igem neutral gepuffertem Formalin in ausreichender Menge. Empfohlen wird eine Fixationsdauer zwischen 6 h und 72 h [419]. |
| Kap. | S. 208 | Ergänzungsvorschlag - Informationen zu dem neuen Medikament Abemaciclib als ein weiterer CDk4/CDk6-Inhibitor | In Anlehnung an den Text zu Ribociclib Seite 208 „Für Ribociclib als weitere Substanz aus der Gruppe der CDK 4/6-Inhibitoren liegt eine positive Phase-3-Studie für Ribociclib in Kombination mit Letrozol als Erstlinientherapie vor“.:

Für Abemaciclib als weiterer CDK4/6 Inhibitor liegen Ergebnisse zu einer positiven Phase III-Studie in der Erstlinientherapie (Monarch3-Kombination mit Anastrozol oder Letrozol) vor sowie eine weitere Phase III-Studie zur Zweitlinientherapie (Monarch2-Kombination mit Fulvestrant) beim Mammakarzinom vor. | Mit 2 positiven Phase-III-Studien strebt die Firma Lilly weltweit die Zulassung dieses neuen Medikaments für HR+ und HER2- Patientinnen mit lokal vorgeschrittenem oder metastasierenden Brustkrebs an.

PMID:28968163 | Rückkopplung an AG | Konsens AG:

Änderung mit Ergänzungssatz annehmen:

_In Anlehnung an den Text zu Ribociclib Seite 208 „Für Ribociclib als weitere Substanz aus der Gruppe der CDK 4/6-Inhibitoren liegt eine positive Phase-3-Studie für Ribociclib in Kombination mit Letrozol als Erstlinientherapie vor. Eine Zulassung für Europa wurde im September 2017 erteilt.“:

Zukünftig werden weitere Substanzen die Zulassung anstreben. Für Abemaciclib als weiterer CDK4/6 Inhibitor liegen Ergebnisse zu einer positiven Phase III-Studie in der Erstlinientherapie (Monarch3- Kombination mit Anastrozol oder Letrozol) sowie eine weitere Phase III-Studie zur Zweitlinientherapie (Monarch2- Kombination..._
<table>
<thead>
<tr>
<th>Kap.</th>
<th>Seite</th>
<th>Inhalt</th>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.2.3.</td>
<td>79</td>
<td>Damit hat sich das Rezidivrisiko gegenüber älteren Angaben deutlich verringert [284].</td>
<td>Rückkoppelung an AG: Konsens AG: Änderung annehmen: Damit hat sich das Rezidivrisiko gegenüber älteren Angaben deutlich verringert [284].</td>
</tr>
<tr>
<td>5.4.3.4.</td>
<td>231</td>
<td>Wenn eine begrenzte Zahl, insbesondere isolierte Lebermetastasen in der Leber auftreten, kann eine Metastasenresektion erfolgen. Alternativ kann auch eine Radiofrequenzablation, eine transarterielle Chemoembolisation (TACE) oder eine stereotaktische Bestrahlung (SBRT) erwogen werden, auch wenn eine begrenzte Zahl, insbesondere isolierte Lebermetastasen in der Leber auftreten, kann eine Metastasenresektion erfolgen. (Hier sollte evtl. noch eine Definition ergänzt werden, was man unter begrenzter Zahl versteht, soweit möglich) Alternativ können auch lokal ablative Therapien wie eine thermische Ablation (z.B. Radiofrequenzablation) oder hoch konformale, Hochdosisraten-Strahlentherapie (wie z.B. SBRT oder HDR-Brachytherapie) angewendet werden, auch wenn hierzu noch wenige Daten vorliegen.</td>
<td>Rückkoppelung an AG: Konsens AG: Änderung nicht erforderlich.</td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019

Im Einzelfall kann im Rahmen des onkologischen Gesamtkonzepts auch bei mehreren oder bilateralen Lebermetastasen oder auch bei limitiertem, jedoch stabilem extrahepatischem Generell sollten die Verfahren eingesetzt werden, die in der behandelnden Institution mit dem größten Erfahrungswert hinterlegt sind, und eben nicht Verfahren, für die Vor-Ort ggf. keine besonderen Erfahrungen vorhanden sind. Lokoregionäre Therapieverfahren (hier primär die Yttrium-90- Radioembolisierung (SIRT)) können bei einer hepatischen Metastasierung erwogen werden, die die Möglichkeiten der lokalen Verfahren in Bezug auf Anzahl und Größe übersteigen. Zu einer transarterielle Chemoembolisierung (TACE) liegen beim Mammakarzinom keine Daten vor. Insgesamt ist zu beachten, dass mit den üblichen Staginguntersuchungen mittels Abdomen-CT oder Sonographie die Ausdehnung der Lebermetastasierung deutlich unterschätzt werden kann und ggf. eine zusätzliche Bildgebung im MRT mit Leberspezifischen Kontrastmitteln vor Therapie durchgeführt werden sollte, um unerwünschte Komplikationen zu vermeiden.

Faktoren, die die Entscheidung zur Resektion/Ablation positiv beeinflussen sind: dem größten Erfahrungswert hinterlegt sind, und eben nicht Verfahren, für die Vor-Ort ggf. keine besonderen Erfahrungen vorliegen. Im Einzelfall bedeutet dies Abschnitt 5.4.3.4. für die Behandlung von Lebermetastasen beispielsweise, dass als lokale Therapie eine thermische Ablation oder hoch konformale, Hochdosisraten-Strahlentherapie vorgehalten werden sollte (wie z.B. SBRT oder HDR-Brachytherapie). Eben diese Formulierung findet sich in der ESOM Leitlinie CRC (s.o., van Cutsem, PMID: 27380959) oder im neuen S3 Entwurf CRC. Für solche hoch konformalen Verfahren liegen gute Daten für die lokale Kontrolle des Mamma Karzinoms vor (PMID: 21497930, PMID: 22525020 und PMID: 26169362), wie auch für die RFA (PMID: 18575933, PMID: 28645556). In gleicher Weise beziehen sich diese Daten auch auf Lungenmetastasen (Abschnitt 5.4.3.5.).

Für den Werkzeugkasten bestehen, und daher die chirurgische Resektion nicht ganz zufällig an erster Stelle genannt ist. Zweitens erübrigt sich der Hinweis, dass ein Verfahren an einer Institution angewendet wird, an der keine adäquaten Erfahrungen bestehen, und drittens sollte die Patientin eben an eine Institution geschickt werden wo für das geplante Verfahren eine Strahlentherapie (wie z.B. SBRT oder HDR-Brachytherapie) angewendet werden, auch wenn hierzu noch wenige Daten vorliegen. Als lokoregionäres Therapieverfahren kann die Yttrium-90-Radioembolisation (SIRT) bei einer hepatischen Metastasierung erwogen werden, die die Möglichkeiten der lokalen Verfahren in Bezug auf Anzahl und Größe übersteigen.

Faktoren, die die Entscheidung zur Resektion positiv beeinflussen sind: Zeitintervall nach Primärbehandlung > 12 Monate, gutes Ansprechen auf die systemische Therapie und Östrogen-Rezeptor-positive Erkrankung. Nach der operativen Therapie sollte eine systemische Therapie angeschlossen werden. Voraussetzung für die lokale Lebermetastasen-Therapie ist in der Regel der -oder hoch konformale, Hochdosisraten-Strahlentherapie (wie z.B. SBRT oder HDR-Brachytherapie) -oder hoch konformale, Hochdosisraten-Strahlentherapie (wie z.B. SBRT oder HDR-Brachytherapie) -oder hoch konformale, Hochdosisraten-Strahlentherapie (wie z.B. SBRT oder HDR-Brachytherapie) -oder hoch konformale, Hochdosisraten-Strahlentherapie (wie z.B. SBRT oder HDR-Brachytherapie) -oder hoch konformale, Hochdosisraten-Strahlentherapie (wie z.B. SBRT oder HDR-Brachytherapie)
Tumor eine Leberresektion indiziert sein [1133-1136].

Voraussetzung für die lokale Lebermetastasen-Therapie ist in der Regel der Ausschluss extrahepatischer Metastasen sowie eines lokal-/lokoregionalen Rezidivs und von Zweitkarzinomen.

Im Einzelfall kann im Rahmen des onkologischen Gesamtkonzepts auch bei mehreren oder bilateralen Lebermetastasen oder auch bei limitiertem, jedoch stabilem extrahepatischem Tumor eine Leberresektion oder interventionelle Lebertherapie indiziert sein [1133-1136].

Auch wenn mit den erwähnten Verfahren nicht immer ein kurativer Ansatz verfolgt werden kann, kann doch u.U. eine progressionsfreie Zeit erreicht werden.

Ausschluss extrahepatischer Metastasen sowie eines lokal-/lokoregionalen Rezidivs und von Zweitkarzinomen.

Im Einzelfall kann im Rahmen des onkologischen Gesamtkonzepts auch bei mehreren oder bilateralen Lebermetastasen oder auch bei limitiertem, jedoch stabilem extrahepatischem Tumor eine Leberresektion oder interventionelle Lebertherapie indiziert sein [1133-1136].

Auch wenn mit den erwähnten Verfahren nicht immer ein kurativer Ansatz verfolgt werden kann, kann doch u.U. eine progressionsfreie Zeit erreicht werden.

adäquate Expertise existiert.

- Gute Ergänzung: ‘Im Einzelfall kann im Rahmen des onkologischen Gesamtkonzepts auch bei mehreren
oder bilateralen Lebermetastasen oder auch bei limitiertem, jedoch stabilem extrahepatischem Tumor eine Leberresektion oder interventionelle Lebertherapie indiziert sein [1133-1136].

Auch wenn mit den erwähnten Verfahren nicht immer ein curativer Ansatz verfolgt werden kann, kann doch u.U. eine progressionsfreie Zeit erreicht werden.'

Weil die hierfür erforderlichen Array-Analysen in der täglichen Diagnostik nicht realisierbar sind, wurde der kommerziell verfügbare PAM50-Genexpressionstest entwickelt, der diese intrinsischen Subtypen in der klinischen Diagnostik zuverlässig nachweisen kann und

Weil die hierfür erforderlichen Array-Analysen in der täglichen Diagnostik nicht realisierbar sind, wurden kommerziell verfügbare Genexpressionstests entwickelt, mittels derer die intrinsischen Subtypen in der klinischen Diagnostik zuverlässig nachgewiesen werden können und die eine prognostische Signifikanz besitzen: Der PAM50-

Neben dem PAM50-Genexpressionstest steht seit dem Jahr 2011 der BluePrint-Test für die Bestimmung der intrinsischen Subtypen zur Verfügung.

Der zuverlässige Nachweis der Subtypen und der prognostischen Signifikanz wurde in den folgenden Studien gezeigt.

Whitworth P., et al., Chemosensitivity Predicted by BluePrint 80-Gene Functional Subtype and MammaPrint in the Prospective Neoadjuvant Breast

Rückkoppelung an AG

Konsens AG: Keine Änderung!
Eine prognostische Signifikanz besitzt der Genexpressionstest [515] und der BluePrint-Test [6 Referenzen].

De Snoo F., et al., Combined Use of MammaPrint and Molecular Subtyping Profile (BluePrint) to Identify Subgroups with Marked Differences in Response to Neoadjuvant Treatment. J Clin Oncol 2011, 29:10613

8. Reviewverfahren und Verabschiedung

<table>
<thead>
<tr>
<th>9</th>
<th>10</th>
<th>Kap. 4.5.4.3. S. 117</th>
<th>So sind mit 79% die meisten, aber nicht alle triple-negativen Tumoren auch basal-like und andererseits sind 31% der basal-like Tumoren nicht triple-negativ [521].</th>
</tr>
</thead>
</table>

[S21]. Nach dieser Stelle einfügen:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Auch die diskordanten Ergebnisse von BluePrint vs. molekulare Subtypisierung sollte angegeben werden, diese zeigen in dieselbe Richtung wie beim Pam 50</th>
</tr>
</thead>
</table>

Referenz:

Die pCR Ergebnisse (pathological clinical response) untermauern diese Reklassifizierung.

Eine pCR von 3% bei Luminal bedeutet, das eine Chemotherapie hier nicht wirkt, während die Wirksamkeit der Therapie mit pCR von 53% wesentlich besser ist als die von 37%. Dies spricht in diesem Fall für die korrektivere Einteilung in die entsprechenden Subtypen.

Die Decision Impact Studie PRIMe wurde an 430 deutschsprachigen Patientinnen durchgeführt und die Ergebnisse von MammaPrint und BluePrint haben die klinische...
Auch in der WSG PRIMe Studie [Literaturstelle] unterschieden sich die klinischen (IHC) und molekularen luminalen Subtypen deutlich in 34% aller Fälle und führten zu einer Änderung der Chemotherapie-Behandlungsempfehlung vor und nach MammaPrint/BluePrint Testung in 29.1% aller Fälle. Diese Änderungen waren sehr stark vom Ergebnis des molekularen Subtyps beeinflusst: Von den 429 Luminal-A/B-like Tumoren nach IHC waren nur 283 (65.9%) übereinstimmend mit BluePrint:

Die Adhärenz der Kliniker und Patientinnen zur Befolgung der Multigentest-Risikoeinschätzung für die Erstellung des Behandlungsplans war mit über 92% in beide Richtungen

Behandlungsempfehlung bei Frauen mit frühem Brustkrebs und bis zu 3 befallenen Lymphknoten stark beeinflusst:

Eine Änderung der Behandlungsempfehlung erfolgte in 29.1% aller Fälle

In 60 Pat. (14.2%), änderte sich die Behandlungsempfehlung von CT zu keine CT
In 65 Pat. (15.1%) von keine CT zu CT
In 104 (24.2%) Pat. wurde an der CT Entscheidung festgehalten und in 201 (46.7%) Pat. blieb man bei der Entscheidung, keine Chemotherapie zu geben

Diese Änderung der Behandlungsempfehlung war entscheidend beeinflusst vom Ergebnis des BluePrint Tests.

Die klinischen (IHC) und molekularen luminalen Subtypen unterschieden sich deutlich: Änderung in 34% aller Fälle

Bei MammaPrint/BluePrint Patientinnen mit niedrigem Risiko entschieden sich die Ärzte in 92% aller Fälle gegen den Einsatz einer adjuvanten Chemotherapie. Bei MammaPrint/BluePrint Patientinnen mit hohem Risiko entschieden sich die
identifizieren konnten. In der multivariaten Analyse zeigte sich die prognostische Bedeutung unabhängig von klassischen klinisch-pathologischen Faktoren wie Alter, Tumorgröße, Nodalstatus. [103].

konnten klinisch vergleichbare Ergebnisse mit 99% zwischen Frischgewebe und FFPE Gewebe gezeigt werden [6,7].

In der multivariaten Analyse zeigte sich die prognostische Bedeutung unabhängig von klassischen klinisch-pathologischen Faktoren wie Alter, Tumorgröße, Nodalstatus [103].

7) Mittempergher L., et al., Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh

13) Bueno-de-Mesquita JM., et al., Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective

In der prospektiven MINDACT Studie wurde MammaPrint® mit klinisch-pathologischen Kriterien (AdjuvantOnline®) verglichen [506]. 32% hatten diskordante Ergebnisse zwischen genomischer (G) und klinisch-pathologischer (C) Risikoeinteilung. C high-risk / G low-risk Patientinnen hatten ein erkrankungsfreies Überleben von 90,3%, wenn sie zur genomischen Risikoeinteilung randomisiert wurden und dementprechend keine Chemotherapie erhielten. |

endokrine Therapie erhielten, hatten nach 5 Jahren ein sehr gutes fernmetastasenfreies Überleben von 94,7 %. Daraus ergibt sich, dass für diese Patientinnen von einer low risk Situation ausgegangen werden kann und keine Chemotherapie nötig ist.

Dabei hatten 48% dieser Patientinnengruppe 1-3 befallene Lymphknoten, 58% einen Tumor > 2 cm und zu 93% einem Tumor mit Grad 2 oder 3, was dafür spricht, dass der MammaPrint Test ein von klinischen Faktoren unabängiges Ergebnis liefert. Insgesamt konnte bei 46% der Patientinnen mit klinisch hohem Risiko auf eine Chemotherapie verzichtet werden.

Jahres-Überlebens ohne Fernmetastase (d.h. die Nichtinferioritätsgrenze) von 92% nicht unterschreiten darf. Dieses Primärziel wurde vollumfänglich erreicht.

Die primäre Analysegruppe der MINDACT Studie hatte ein fernmetastasenfreies Überleben nach 5 Jahren von 94.8 % ohne Chemotherapie, obwohl 48% der primären Analysegruppe 1-3 positive Lymphknoten, 58% einen Tumor größer als 2 cm und 93% einen Grad 2 oder 3 Tumor hatten. Insgesamt konnte 46% der Patientinnen mit klinisch hohem Risiko eine Chemotherapie erspart werden.

Referenz 506 der Konsultationsfassung (EORTC MINDACT Studie)

Weitere Referenzen:
Harbeck, N., Über Multigensignaturen muss man als Kliniker Bescheid wissen. TZM-News: 42,1/ 2017

In der Chemotherapiegruppe wurde für die Patientinnen eine Risikominderung von absolut etwa 3 Prozentpunkten beobachtet, die in der Per-Protokoll-Auswertung statistisch signifikant war (p=0,03; Hazard Ratio:0,64). Daraus ergibt sich, dass ein relevanter Effekt der Chemotherapie nicht ausgeschlossen werden kann.
Ein Vergleich der prognostischen Aussagekraft zwischen den beiden Genexpression-Assays Oncotype DX® und PAM50 in der TransATAC Studie zeigte, dass der mittels PAM50 bestimmte Risikoscore ROR (risk of recurrence) mehr prognostische Informationen bei ER-positiven, endokrin behandelten Patientinnen lieferte als der durch Oncotype DX® berechnete Recurrence Score (RS) [544]. […] Der Vergleich des RS mit dem EPclin-Score in dieser Studie ist jedoch klinisch nicht ohne weiteres interpretierbar, da die etablierten Grenzwerte des RS nicht berücksichtigt wurden.

Nach „Grenzwerte des RS nicht berücksichtigt wurden“ einfügen:

Referenz

Für Rückkopplung an AG: Keine Änderung!
<table>
<thead>
<tr>
<th>Seite</th>
<th>Kap., S.</th>
<th>Inhalt</th>
</tr>
</thead>
</table>
| 13 | 4.5.4.4. 10 | Kap. 4.5.4.4. S. 119: Von der American Society of Clinical Oncology Clinical (ASCO) wurde aktuell eine Leitlinie für den Einsatz von Biomarkern publiziert.

In den aktualisierten ASCO-Leitlinien vom 10. Juli 2017 werden von allen untersuchten Biomarkern zur Entscheidungshilfe für oder gegen eine adjuvante Chemotherapie bei ER / PgR-positivem, HER2-negativem Brustkrebs alle vier Genexpressionstests (Oncotype DX, MammaPrint, Endopredict und Pam50) für den Einsatz bei Lymphknoten-negativem Brustkrebs empfohlen.

Bei Patientinnen mit Lymphknoten-positivem Brustkrebs wird aufgrund der aktuellsten Studienlage einzig der MammaPrint-Test empfohlen, um Entscheidungen über die Zurückhaltung einer adjuvanten systemischen Chemotherapie zu treffen. Dies betrifft insbesondere die Patientinnenpopulation mit hohem klinischer Risikoeinschätzung (nach MINDACT Kategorisierung).

ASCO Leitlinienempfehlung zu MammaPrint im Detail (Übers.)

Bei ER / PgR-positivem, HER2-negativem, Lymphknoten-negativem Brustkrebs kann der MammaPrint-Assay (MammaPrint; Agendia, Irvine, CA) bei Patientinnen mit hohem klinischen Risiko nach MINDACT Kategorisierung eingesetzt werden, um Entscheidungen über die Zurückhaltung einer adjuvanten systemischen Chemotherapie zu treffen, da der Test die Fähigkeit besitzt, eine Patientinnenpopulation mit guter Prognose und potenziell begrenzten Chemotherapienutzen zu identifizieren. (Starke Empfehlung, EB)

Bei ER / PgR-positivem, HER2-negativem, Lymphknoten-negativem Brustkrebs sollte der MammaPrint-Assay nicht bei Patientinnen mit niedrigem klinischen Risiko nach MINDACT-Kategorisierung eingesetzt werden, um Entscheidungen über die Einbehaltung einer adjuvanten systemischen Chemotherapie zu treffen. Frauen in der niedrigen klinischen Risikokategorie hatten ausgezeichnete Ergebnisse und schienen nicht von einer Chemotherapie zu profitieren, auch wenn sie ein hohes genomisches Risiko aufwiesen. (Starke Empfehlung, EB-H)

Bei ER / PgR-positivem, HER2-negativem, Lymphknoten-positivem Brustkrebs kann der MammaPrint-Assay bei Patientinnen mit 1-3 positiven Lymphknoten und hohem

MammaPrint® mit „hoch“ und für EndoPredict® mit „mittelgradig“ bewertet. Im fokussierten Update wurde außerdem ein möglicher Nutzen des MammaPrint® bei nodal-positiven Patientinnen mit ER/PR-positiven, HER2-negativen Mammakarzinomen und 1 bis 3 befallenen Lymphknoten sowie hohem klinischen Risiko (nach MINDACT-Kategorisierung) festgestellt (Evidenzqualität: hoch).
werden, um Entscheidungen über die Zurückhaltung einer adjuvanten systemischen Chemotherapie zu treffen, da der Test die Fähigkeit besitzt, eine Patientinnenpopulation mit guter Prognose und potenziell begrenzten Chemotherapienutzen zu identifizieren. (Moderate Empfehlung; EB-H)

- Allerdings sollten solche Patientinnen darüber informiert werden, dass ein Nutzen der Chemotherapie nicht ausgeschlossen werden kann, insbesondere bei Patientinnen mit mehr als einem beteiligten Lymphknoten.

Bei ER / PgR-positivem, HER2-negativem, Lymphknoten-positivem Brustkrebs sollte der MammaPrint-Assay nicht bei Patientinnen mit 1-3 positiven Knoten und niedrigem klinischen Risiko nach MINDACT-Kategorisierung verwendet werden, um Entscheidungen über die Zurückhaltung einer adjuvanten systemischen Chemotherapie zu treffen. Es gibt nicht genügend Daten über den klinischen Nutzen von MammaPrint in dieser spezifischen Patientinnenpopulation. (Moderate Empfehlung; IC-L)
<table>
<thead>
<tr>
<th>Kap. 4.5.4.</th>
<th>S. 120</th>
<th>Das Statement in der hier vorliegenden Leitlinie orientiert sich an der aktuellen ASCO Biomarker Guideline...</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>10</td>
<td>Dies ist so nicht mehr korrekt und sollte aktualisiert werden: Textvorschlag Das Statement in der hier vorliegenden Leitlinie orientiert sich an der ASCO Biomarker guideline vor der Aktualisierung am 10. Juli 2017</td>
</tr>
<tr>
<td>Kap. 4.5.4.</td>
<td>S. 121</td>
<td>...Multigentest bei der Entscheidung gegen eine (neo-)adjuvante Chemotherapie herangezogen werden, wenn dieser ein niedriges Rückfallrisiko vorhersagt.</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>Ab Zeile 37 hier einfügen: Ab Zeile 37 hier einfügen: Die aktuellen Leitlinien der St. Gallen Konsensuskonferenz empfehlen hier den Einsatz der Multigentests MammaPrint und Oncotype DX für Patientinnen mit 1-3 befallenen Lymphknoten, während die ASCO Biomarker guideline in dieser Situation nur einen Test (MammaPrint) empfiehlt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rückkoppelung an AG Konsens AG: Keine Änderung!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rückkoppelung an AG Konsens AG: Keine Änderung!</td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019
ein weiterer Genexpressionstest als Entscheidungsgrundlage für lymphknoten-positive Patientinnen empfohlen (Oncotype DX)

Mit den aktualisierten „St. Gallen“-Richtlinien wird MammaPrint auch weiterhin bei der Entscheidungsfindung über eine adjuvante Chemotherapie bei Tumoren empfohlen, bei denen keine Lymphknoten befallen sind (Lymphknoten-negative Patientinnen), sowie als prognostischer Marker, um als Entscheidungsgrundlage bei der adjuvanten endokrinen (Hormon-)Therapie bei Lymphknoten-negativen Patientinnen zu helfen.

ASCO Biomarker Leitlinien 2017

Siehe Begründung von 4.5.4.4. S. 120:

Bei ER / PgR-positivem, HER2-negativem, Lymphknoten-positivem Brustkrebs kann der MammaPrint-Assay bei Patientinnen mit 1-3 positiven Lymphknoten und hohem klinischen Risiko nach MINDACT-
Kategorisierung verwendet werden, um Entscheidungen über die Zurückhaltung einer adjuvanten systemischen Chemotherapie zu treffen, da der Test die Fähigkeit besitzt, eine Patientinnenpopulation mit guter Prognose und potenziell begrenzten Chemotherapienutzen zu identifizieren. (Moderate Empfehlung; EB-H)

- Allerdings sollten solche Patientinnen darüber informiert werden, dass ein Nutzen der Chemotherapie nicht ausgeschlossen werden kann, insbesondere bei Patientinnen mit mehr als einem beteiligten Lymphknoten.

ähnlichkeit zu dem Mammakarzinom der Frau gynäkoonkologische Fachexpertise.

aber in einer ganz wesentlichen Wechselwirkung zu den allgemeinen geschlechtsbezogenen Gesundheitsproblemen des Mannes. Bsp: - Behandlung der sexuellen Störung durch die Tamoxifentherapie - Problematik des höheren Risikos und der Aggressivität des Prostatakrebses bei Männern mit BRCA-Mutationen,...

<table>
<thead>
<tr>
<th>Seite</th>
<th>Kap.</th>
<th>S.</th>
<th>Textinhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>3.1.</td>
<td>34</td>
<td>„Die individuelle somatische, psychische und soziale Situation, das Alter und die Komorbiditäten der Patientin sind im Rahmen der Gesprächsführung auch das Geschlecht zu berücksichtigen.“</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Es ist unverzichtbar hier auch einzuschließen, dass im Rahmen der Gesprächsführung auch das Geschlecht zu berücksichtigen ist!</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bezug auf „Leitlinie Gesundheitsinformation“: Es ist ethisch geboten, respektvoll und sensibel auf die Wertvorstellungen und Sorgen der Nutzerinnen und Nutzer von Gesundheitsinformationen einzugehen, ihre Autonomie, kulturellen Unterschiede, subjektive Gesundheitsvorstellungen und Theorien, geschlechts- und altersspezifischen Belange sowie die Belange von Menschen mit Behinderungen zu achten.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rückkopplung an AG: Konsens AG: Änderung annehmen: „Die individuelle somatische, psychische und soziale Situation, das Geschlecht, das Alter und die Komorbiditäten sind im Rahmen der Gesprächsführung zu berücksichtigen.“</td>
</tr>
<tr>
<td>18</td>
<td>4.6.</td>
<td>155</td>
<td>Haut- oder Brustwandinfiltration (T4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Haut- oder Brustwandinfiltration (T4a, T4b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Korrespondierende Kategorien zu den beschriebenen Infiltrationen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rückkopplung an AG: Konsens AG: Änderung annehmen: Haut- oder Brustwandinfiltration (T4a, T4b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Auch vorher wird in diesem Absatz auf das erkrankungsfreie Überleben – z. B. bei TAILORx – rekurriert. Das ist unseres Erachtens auch sachgerechter, weil selbstverständlich auch Lokalrezidive und Zweitkarzinome eine große Bedeutung für die Betroffenen haben. Darüber hinaus ist es aus unserer Sicht notwendig, darzustellen, was durch den Verzicht auf eine Chemotherapie aufgegeben wird. Leider kann das</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>Kap. 4.5.4.4. S.118</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Prozentpunkten beobachtet, die in der Per-Protokoll-Auswertung statistisch signifikant waren (p = 0.03; Hazard Ratio ≈ 0.64). Daraus ergibt sich, dass ein relevanter Effekt der Chemotherapie nicht ausgeschlossen werden kann.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bislang in direkter Weise nur die Studie MINDACT beantworten. Es ist in diesem Zusammenhang unverständlich, warum von den Autoren und auch in dem vorliegenden Entwurf diese Frage offenbar nur als sekundär bzw. noch nicht einmal berichtsrelevant eingeschätzt wird.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>„Diese Ergebnisse zeigen, dass für die individuelle Patientin unterschiedliche Tests unterschiedliche Risikoeinteilungen und damit divergente Empfehlungen für</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diese Ergebnisse zeigen, dass für die individuelle Patientin unterschiedliche Tests unterschiedliche Risikoeinteilungen und damit divergente Empfehlungen für</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemotherapie erhielten. In der Chemotherapiegruppe wurde für die Patientinnen eine Risikominderung von absolut etwa 3 Prozentpunkten beobachtet, die in der Per-Protokoll-Auswertung statistisch signifikant war (p=0.03; Hazard Ratio=0.64). Daraus ergibt sich, dass ein relevanter Effekt der Chemotherapie nicht ausgeschlossen werden kann.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konsens AG: Änderung annehmen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diese Ergebnisse zeigen, dass für die individuelle Patientin unterschiedliche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kap. 4.5.4.4. S.120</td>
<td>„Im Abschlussbericht des IQWiG war ein wesentliches Gegenargument gegen die oben referierten und größtenteils im aktuellen systematischen Review für Biomarker der ASCO verwendeten Prognosestudien, dass weniger als 70% der in den Studien rekrutierten Tumorproben mit den genannten Multigentests untersucht werden konnten.“</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 13</td>
<td>Im Abschlussbericht des IQWiG war ein wesentliches Gegenargument gegen die oben referierten und größtenteils im aktuellen systematischen Review für Biomarker der ASCO verwendeten Prognosestudien, dass weniger als zufallsbereinigt 70% der in den Studien rekrutierten Tumorproben mit den genannten Multigentests untersucht werden konnten. Auch wenn im Methodenteil des IQWiG-Abschlussberichts nicht explizit beschrieben, so wurde doch bei jeder Studie geprüft, ob das Fehlen von Daten auf einem mutmaßlichen Zufallsmechanismus beruhen konnte oder nicht. Dies ist dem Abschnitt A3.2.2.1 des IQWiG-Abschlussberichts eindeutig zu entnehmen. So wurde die Studie Martin 2014 in den Bericht eingeschlossen, obschon die Ergebnisse auf nur 45 % der ursprünglich eingeschlossenen Patientinnen beruhten. Allerdings wurde für einen relevanten Anteil ein zufallsbedingter Ausfall angenommen, sodass zufallsbereinigt von 77 % berücksichtigten Proben ausgegangen wurde. Ob damit weiterhin der Ansatz des IQWiG, Studien auszuschließen, wenn Rückkoppelung an AG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tests unterschiedliche Risikoeinteilungen und damit divergente Empfehlungen für oder gegen eine Chemotherapie ergeben können.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | Konsens AG: Änderung annehmen: Im Abschlussbericht des IQWiG war ein wesentliches Gegenargument gegen die oben referierten und größtenteils im aktuellen systematischen Review für Biomarker der ASCO verwendeten Prognosestudien, dass weniger als zufallsbereinigt 70% der in den Studien rekrutierten Tumorproben mit den genannten Multigentests untersucht werden konnten.
mehr als 30 % der Proben aus nicht zufälligen Gründen unberücksichtigt blieben, zu kritisieren ist, überlassen wir selbstverständlich der Leitliniengruppe.

wissenschaftlichen Publikationen ist daher eine randomisierte Studie ethisch nur schwer zu rechtfertigen.

erkennen, dass der Verzicht auf eine Chemotherapie bei Patientinnen mit einem niedrigen Risiko des Multigentests die eindeutig beste Empfehlung ist. Registerstudien liegen für den Oncotype DX® bereits vor und belegen die prognostische Bedeutung des Multigentests, auch im Kontext der adjuvanten Chemotherapie, in der nodal-negativen und in der nodal-positiven Situation [549-551].

23 15 Kap. 5.4.2.2. S. 217 Capecitabine 2000 + Paclitaxel 175 Hier ist die korrekte Zykluslänge 21 Tage! Referenz 1043 / Rückkopplung an AG Konsens AG: Keine Änderung! Ist bereits im Text richtig mit der Zykluslänge von 21 Tagen ausgewiesen.

24 15 Kap. 5.4.2.2. S. 217 Fulvestrant 500/ Palbociclib 125 Korrekt bei FULVESTRANT / PALBOCICLIB: Fulvestrant Tage 1,15,29 (nur im 1. Zyklus, ab Z2 alle 4 Wochen) + Palbociclib (1-21, alle 4 Wochen) / Rückkopplung an AG Konsens AG: Änderung annehmen: 1-21 Palbociclib 1,15,29 (nur im 1. Zyklus, ab 2. Zyklus alle 4 Wochen) Fulvestrant
<table>
<thead>
<tr>
<th>Kap./S.</th>
<th>Sitzung</th>
<th>Seite</th>
<th>Textinhalt</th>
<th>Rückkopplung an AG</th>
<th>Änderung notwendig?</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.3.6. S.233</td>
<td>25 15</td>
<td>Bei wenig ausgebreiteten Befunden können topische Verfahren d.h. ein topisch wirksames Zytostatikum, z. B. Miltefosin, appliziert werden.</td>
<td>Miltefosin gibt es in Deutschland nicht mehr!</td>
<td></td>
<td>Konsens AG: Miltefosin streichen!</td>
</tr>
<tr>
<td>6.3.8. S. 272</td>
<td>27 15</td>
<td>Am Ende des Absatzes steht: Somit ist die supportive Therapie der Neurotoxizität... Auch das ist nicht korrekt: Es gibt keinerlei medikamentöse Therapie, nur Bewegungstherapien! Das</td>
<td>Korrekt ist: Eine supportive kausale Therapie der Neuropathie ist nicht bekannt. Eine Grad 2 PNP ist eine schwere, chronische Beeinträchtigung der Lebensqualität! Dem steht ein sehr überschaubarer Vorteil der taxanhaltigen Therapie im Outcome gegenüber. Die Taxan Aufklärung der</td>
<td></td>
<td>Konsens AG: keine Änderung!</td>
</tr>
</tbody>
</table>

| Kap. 3.2.2 | 1. Satz (nach Empf.) | S. 46 | In Deutschland ist das Mammographie-Screening für Frauen ab dem Alter von 50 Jahren bis zum Ende des 69. Lebensjahres Bestandteil der Richtlinie über die Früherkennung von Krebserkrankungen | Bitte Gültigkeit des Satzes überprüfen! Ebenfalls steht dies in der obigen Empfehlung 3.11. b (S. 45), dies bitte auch bzgl. der Übereinstimmung mit der Richtlinie prüfen! |

| 28 15 | / | / | | Rückkopplung an AG | Konsens AG: Keine Änderung! | Keine Änderung notwendig; die Arbeit von Gradishar wurde im JCO veröffentlicht!!! Das ist höchster wissenschaftlicher Standard; der Kommentar 31 hat keinerlei wissenschaftliche Basis und klingt sehr nach einem Bauchgefühl des Lesers. |

<p>| 29 16 | / | / | | Rückkopplung an AG | Konsens AG: | Keine Änderung! | S. 45: Konsensustext bleibt, da er sich auf die Studienlage und Auswertung bezieht. S. 46: Hintergrundtext redaktionelle |</p>
<table>
<thead>
<tr>
<th>Reviewverfahren und Verabschiedung</th>
</tr>
</thead>
</table>

Aktualisierung (KFE-RL Fassung am 1.1.2017 in Kraft getreten):
Ich schlage hier folgende Ergänzung vor:

Die Anwendung der Hypofraktionierung bedeutet eine Verkürzung der Behandlungszeit von 28 auf 15 Fraktionen. Wenn auch ein Boost angewandt werden soll, ist die Verkürzung der Behandlungszeit zu relativieren mit 15+8 gegenüber 28 Fraktionen, somit werden gegenüber der konv. Fraktionierung mit simultan integriertem Boost nur 5 Tage eingespart.

Das jedoch bei einer Verschlechterung der Dosisverteilung, da die Hypofraktionierung einen sequentiellen Boost erfordert. Wie wichtig der Einfluss von Bestrahlungstechniken ist, zeigte die Arbeit von Sardar et al. mit einem deutlich erhöhten Risiko für kardiovaskuläre Risiken bei Patientinnen nach Bestrahlung der linken Brust, im Vergleich zu Patientinnen mit Bestrahlung der rechten Brust, nach 15 Jahren. Dies mag in der langen Zeit bis zum Eintritt der KHK begründet sein, mindestens so wichtig könnte hier aber auch der Einfluss moderner

Literaturnachweis

Rückkopplung an AG

Konsens AG: Keine Änderung!

Der integrierte Boost ist ausreichend im Text gewürdigt. Die vorgeschlagene Änderung enthält zum Teil Spekulationen.
Eine generelle Empfehlung für PET oder PET-CT wird orientierend an den NCCN 2014, ESMO und NCGBCI Irland 2015 Leitlinie nicht gegeben, da auch hier mit falsch-­negativen Befunden (bei langsamer wachsender Metastasen und Metastasen < 1 cm) und mit falsch-­positiven Befunden zu rechnen ist. PET/PET-CT kann zur weiteren Klärung diskrepanter Befunde erwogen werden [225, 227].

<table>
<thead>
<tr>
<th>Seite</th>
<th>Kap.</th>
<th>Literaturnachweis</th>
</tr>
</thead>
</table>

Rückkopplung an AG

Konsens AG:

Keine Änderung!

Bei der Eingabe zu den Hintergrundexten bzgl. PET/CT liefert der Vorschlagstext keine klareren Formulierungen noch wesentliche evidenzbasierte Änderungen gegenüber dem initialen Text.
unsuchten Frauen ein relevantes Upstaging bezogen auf den N- und M-Status durch die PET/CT, und schließt konsequenter Weise mit dem Hinweis, dass die Patientinnen nach NCCN-Empfehlungen kein PET hätten erhalten sollen [2]! Ähnliche Ergebnisse finden sich in der Arbeit von Sweet Ping Ng et al. [3].

<table>
<thead>
<tr>
<th>Kap.</th>
<th>S.</th>
<th>/</th>
<th>/</th>
<th>Rückkopplung an AG</th>
<th>Konsens AG: Keine Änderung!</th>
</tr>
</thead>
</table>
| 6.3.5 | 256 | Hier sollte das Kapitel der S3 LL Supportive Therapie zitiert werden und entsprechend die Ausführungen erfolgen.
Die Literatur der internationalen LL sollte zudem aktualisiert werden (sind bei den alten Quellen von 2010). | / | Rückkopplung an AG | Konsens AG: Keine Änderung! |

<table>
<thead>
<tr>
<th>Kap.</th>
<th>S.</th>
<th>/</th>
<th>/</th>
<th>Rückkopplung an AG</th>
<th>Konsens AG: Keine Änderung!</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.6</td>
<td>257</td>
<td>Bei den einleitenden Sätzen bitte auch erwähnen, dass das komplette Kapitel fast ausschließlich der S3 LL Supportive Therapie entspricht.</td>
<td>/</td>
<td>Rückkopplung an AG</td>
<td>Konsens AG: Keine Änderung!</td>
</tr>
<tr>
<td>Kap. 6.3.7.</td>
<td>S. 263</td>
<td>Bei den einleitenden Sätzen bitte auch erwähnen, dass das komplette Kapitel fast ausschließlich der S3 LL Supportive Therapie entspricht.</td>
<td>Rückkopplung an AG</td>
<td>Konsens AG:</td>
<td>Keine Änderung!</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Kap. 4.6</td>
<td>S. 154</td>
<td>Wenn keine axilläre Dissektion erfolgt [696], kann in diesen Fällen eine erweiterte axilläre Strahlentherapie erwogen werden.</td>
<td>War in der 2012 Leitlinie als Statement vorhanden und sollte aus meiner Sicht daher wenigstens im Hintergrundtext erwähnt werden. Alternativ als zusätzliches Statement:</td>
<td>Rückkopplung an AG</td>
<td>Konsens AG:</td>
</tr>
<tr>
<td>38</td>
<td>Kap. 3.3.1. S. 53</td>
<td>Bei unselektierten Patientinnen mit einem triple-negativen Mammakarzinom (TNBC) konnte eine Mutationsprävalenz von BRCA1 Mutationen in 8,5% bzw. von BRCA2-Mutationen in 2,7% im Vergleich zu anderen histologischen Subtypen nachgewiesen werden [102].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bei unselektierten Patientinnen mit einem triple-negativen Mammakarzinom (TNBC) konnte eine Mutationsprävalenz von BRCA1 Mutationen in 8,5% bzw. von BRCA2-Mutationen in 2,7% im Vergleich zu anderen histologischen Subtypen nachgewiesen werden [102].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Die Arbeit hat nur TNBC und keine vergleichenden anderen Subtypen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rückkoppelung an AG: Konsens AG: Änderung annehmen: Bei unselektierten Patientinnen mit einem triple-negativen Mammakarzinom (TNBC) konnte eine Mutationsprävalenz von BRCA1 Mutationen in 8,5% bzw. von BRCA2-Mutationen in 2,7% nachgewiesen werden [102].</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. Unabhängigkeit und Umgang mit Interessenkonflikten

Die Gefahr durch Beeinflussung anhand von Col wurde dadurch verringert, indem die systematische Recherche, Auswahl und Bewertung der Literatur durch Personen ohne bedeutende Beziehungen zu Industrie oder Interessensgruppen erfolgte. Die Interdisziplinarität und Multiprofessionalität der S3-LL Mammakarzinom, die strukturierte Konsensusfindung, sowie die öffentliche Begutachtung stellen weitere Elemente zur Reduktion des Verzerrungsrisikos durch Col einzelner Personen dar.

9.1. Einholung von Interessenkonflikterklärungen

9.2. Bewertung von Interessenkonflikten

In dem aktualisierten Formblatt wurden die Auszufüllenden gebeten, anzugeben ob ein thematischer Bezug zu dem vorliegenden Leitlinienthema besteht. Eine abschließende Selbsteinschätzung fand dagegen nicht mehr statt. Die Interessenkonflikterklärungen wurden von einem COI-Bewertungsteam aus der Steuergruppe der Mammakarzinomleitlinie bewertet, namentlich: Prof. R. Kreienberg (Seniorkoordinator, Gynäkologe, ehemals Direktor der Universitätsfrauenklinik Ulm, DGGG), Prof. U.S. Albert (Chefärztin, Frauenklinik in Frankfurt, Senologin, DGS), Prof. W. Budach (Direktor der Klinik für Strahlentherapie der Universitätsklinik in Düsseldorf, DEGRO), Dr. M. Nothacker, MPH (Methodikerin, AMWF).

9.2.1. Bewertungskriterien

Die erste Bewertung der Interessenkonflikterklärungen erfolgte pro Bewerter völlig unabhängig nach der Einteilung: 0 = kein, 1 = gering, 2 = moderat, 3 = gravierend in Bezug auf die eingeschätzte Ausprägung von Interessenkonflikten. Dazu eingetragene Begründungen wurden erfasst. Die Bewertungen wurden zusammengeführt und der Rang der Bewertungen festgestellt. In einer gemeinsamen Telefonkonferenz wurden die Bewertungen diskutiert, die mindestens eine 2 (moderater Interessenkonflikt n=31x) und/oder eine 3 aufwiesen (gravierender Interessenkonflikt, n=15x).

Nach Diskussion erfolgte die abschließende Festlegung der Bewertung. Folgende Kriterien wurden dabei geprüft im Hinblick auf vorliegenden thematischen Bezug und absolute Höhe der Bezüge sowie Enge der Beziehung.
Unabhängigkeit und Umgang mit Interessenkonflikten

- Vorträge finanziert durch die Industrie
- Gutachter-/Beratertätigkeit: Bezahlte Gutachter-/Beratertätigkeit für Industrieverträge (Wissenschaftlicher Beirat/Advisory Board: Tätigkeit für die Industrie)
- Drittmittel direkt finanziert durch die Industrie

44 mal = Bewertung 2: davon 14 Mandatsträger und 30 Experten betroffen
0 mal = Bewertung 3

9.2.2. Umgang mit Interessenkonflikten

Folgender Umgang wird umgesetzt:

- 0-1 (kein oder geringer Interessenkonflikt): keine besonderen Maßnahmen.
- 2 (moderner Interessenkonflikt): keine Abstimmung zu betroffenen Themen.

Leitlinienkoordinatoren und Mitglieder der Steuergruppe wurden von der Abstimmung grundsätzlich ausgeschlossen. Um eine empirische Grundlage für das tatsächlich vorliegende Verzerrungsrisiko in Bezug auf die Gesamtruppenbeurteilung zu schaffen, wurden vor den elektronischen Abstimmungen durch eine vorgeschaltete Frage jeweils die Personen mit moderaten Interessenkonflikten ermittelt. Anschließend war es durch diese verblindete Gruppierung möglich, Sensitivitätsanalysen bezüglich der Gruppe von Personen mit einem moderaten Interessenkonflikt durchzuführen (Ergebnis bei Beteiligung aller vs. Ergebnis bei Ausschluss der Personen mit Interessenkonflikt).

Untenstehende Tabelle zeigt die Statments bei denen es zu einer Doppelabstimmung aufgrund von CoI einzelner Personen kam, sowie die Anzahl der Enthaltsungen.

Die LL-Koordination setzte sich neben dem Haupt-Koordinator (Prof. Wöckel) zusätzlich aus den Ko-Koordinatoren (Prof. Kreienberg, Landshut und Prof. Janni, Ulm) zusammen. Bei Prof. Kreienberg lagen keine Interessenskonflikte vor, dies wurde als relevant erachtet, damit im Team der Koordinatoren ein Interessenausgleich sichergestellt ist.
<table>
<thead>
<tr>
<th>#</th>
<th>Empfehlungen, bei denen es zu Enthaltungen kam:</th>
<th>Anzahl der Enthaltungen aufgrund von CoI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapitel 3.2 Früherkennung, Mammographiescreening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.13. b)</td>
<td>1</td>
</tr>
<tr>
<td>Kapitel 3.3 Frauen mit erhöhtem Risiko für Brustkrebs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.14.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3.15.</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3.16. a)</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3.16. b)</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3.17.</td>
<td>2</td>
</tr>
<tr>
<td>Kapitel 4.5 Pathomorphologische Untersuchung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.30. a.)</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4.30. b.)</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4.30. c.)</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>4.31. a.)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>4.31. b.)</td>
<td>4</td>
</tr>
<tr>
<td>Kapitel 4.7.3 Adjuvante Chemotherapie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.56.</td>
<td>1</td>
</tr>
<tr>
<td>Kapitel 4.7.4 Neoadjuvante Therapie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.61.</td>
<td>1</td>
</tr>
<tr>
<td>Kapitel 5.4 Fernmetastasen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.24. b.)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>5.24. c.)</td>
<td>1</td>
</tr>
<tr>
<td>Kapitel 9 Mammakarzinom des Mannes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>9.4.</td>
<td>7</td>
</tr>
</tbody>
</table>

Der vorgeschlagene Umgang mit CoIs wurde Ende November mit einem unabhängigen Gutachter und Experten für Interessenkonflikte, Prof. Dr. Ludwig von der
Arzneimittelkommission der deutschen Ärzteschaft (AKDÄ) besprochen, der das Verfahren als angemessen bestätigte.

Nachfolgend (Tabelle 13) sind die Interessenskonflikterklärungen als tabellarische Zusammenfassung aufgeführt.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Ute-Susann Albert</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Hans Helge Bartsch</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Supportivtherapie (moderat)</td>
</tr>
<tr>
<td>PD Dr. Freerk Baumann</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Beeinflussbare Lebensstilfaktoren (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Matthias Beckmann</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Ulrich Bick</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Vesna Bjelic-Radisic</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Jens-Uwe Blohmer</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Mammmasonographie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Sara Brucker</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Volker Budach</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Wilfried Budach</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Arno Bücker</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Prätherapeutische Ausbreitungsdagnostik (gering) HER2-Therapie (gering)</td>
</tr>
<tr>
<td>Prof. Dr. Friedrich Degenhardt</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Carsten Denkert</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Gentests (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Michael Denkinger</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Keine Einschränkung</td>
</tr>
</tbody>
</table>
Unabhängigkeit und Umgang mit Interessenkonflikten

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Jürgen Dunst</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Jutta Engel</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Peter Fasching</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Gentests (moderat) Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Tanja Fehm</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Dr. Jasmin Festl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Petra Feyer</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Supportivtherapie (moderat)</td>
</tr>
<tr>
<td>Dr. Markus Follmann MPH MSc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung – Moderator/Methodiker</td>
</tr>
<tr>
<td>Prof. Dr. Bernd Gerber</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Systemtherapie (gering)</td>
</tr>
<tr>
<td>Dr. Christina Gerlach</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Peyman Hadji</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Osteoporose (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Markus Hahn</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Andrea Hahne</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Volker Hanf</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Nadia Harbeck</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Hans Hauner</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Ernährung (gering)</td>
</tr>
<tr>
<td>Prof. Dr. Christoph Heitmann</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Ulla Henschler</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
</tbody>
</table>
Unabhängigkeit und Umgang mit Interessenkonflikten

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Sylvia Heywang-Köbrunner</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Tomosynthese (moderat)</td>
</tr>
<tr>
<td>Dr. Susanne Hirsmüller</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Dieter Hölzel</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Dr. Christoph Honegger</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Dr. Jutta Hübner</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Roswita Hung</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Jens Huober</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Christian Jackisch</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Janni</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Alexander Katalinic</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Gudrun Kemper</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Wolfram Trudo Knoefel</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Dr. Klaus König</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Ina B. Kopp</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung – Moderatorin/Methodikerin</td>
</tr>
<tr>
<td>Prof. Dr. Rolf Kreienberg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Hans H. Kreipe</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Gentests (moderat)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HER2-Diagnostik (moderat)</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>---</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>PD Dr. Mathias Krockenberger</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Christian Kubisch</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Thorsten Kühn</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (gering) Gentes (gering)</td>
</tr>
<tr>
<td>Thomas Langer</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung · Methodiker</td>
</tr>
<tr>
<td>Prof. Dr. Annette Lebeau</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Gentests (moderat) HER-2 Diagnostik (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Hartmut Link</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Systemtherapie (moderat) Eisenmangeltherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Sibylle Loibl</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Hans-Joachim Lück</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Diana Lüftner</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Michael Patrick Lux</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Gunter von Minckwitz</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Systemtherapie (moderat) Neoadjuvante Therapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Volker Möbus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Adjuvante Chemotherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Volkmar Müller</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>Systemtherapie (moderat) Adjuvante Chemotherapie (moderat)</td>
</tr>
</tbody>
</table>
Berater-bzw. Gutachter-tätigkeit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Müller-Schimpfle</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Bildgebende Diagnostik (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Karsten Münstedt</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Ute Nöthlings</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Dr. Monika Nothacker MPH</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung – Moderatorin/Methodikerin</td>
</tr>
<tr>
<td>Kerstin Paradies</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Cordula Petersen</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Oliver Rick</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Dr. Renza Roncarati</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Anton Scharl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Marcus Schmidt</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Rita Schmutzler</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Andreas Schneeweiß</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Ingrid Schreer</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Florian Schütz</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Rüdiger Schulz-Wendtland</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>PD Dr. Ulf Seifart</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>PD Dr. Friederike Siedentopf</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>keine Einschränkung</td>
</tr>
</tbody>
</table>
Unabhängigkeit und Umgang mit Interessenkonflikten

Um den Unabhängigkeit der Autoren und die Relevanz der Interessenkonflikte zu dokumentieren, wurden die folgenden Informationen zusammengestellt:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Sinn</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Gentests (moderat)</td>
</tr>
<tr>
<td>Stephanie Stangl MPH</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung - Methodikerin</td>
</tr>
<tr>
<td>Prof. Dr. Anke Steckelberg</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Elmar Stickeler</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Hans Tesch</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Reina Andrea Tholen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Christoph Thomssen</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Michael Untch</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Joachim Weis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Dr. Anja Welt</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Prof. Dr. Frederik Wenz</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Strahlentherapie (moderat)</td>
</tr>
<tr>
<td>Dr. Simone Wesselmann</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>keine Einschränkung</td>
</tr>
<tr>
<td>Prof. Dr. Achim Wöckel</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
<tr>
<td>Dr. Matthias Zaiss</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Systemtherapie (moderat)</td>
</tr>
</tbody>
</table>
Name

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Barbara Zimmer MPH, MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Supportivtherapie (moderat)</td>
</tr>
</tbody>
</table>

1 = Hier werden entsprechend §139b SGB V finanzielle Beziehungen zu Unternehmen, Institutionen oder Interessenvverbänden im Gesundheitswesen erfasst. Folgende Frage wurde beantwortet: Haben Sie oder die Einrichtung, für die Sie tätig sind, innerhalb des laufenden Jahres oder der 3 Kalenderjahre davor Zuwendungen erhalten von Unternehmen der Gesundheitswirtschaft (z.B. Arzneimittelindustrie, Medizinproduktindustrie), industriellen Interessenvverbänden, kommerziell orientierten Auftragsinstituten, Versicherungen/Versicherungsträgern, oder von öffentlichen Geldgebern (z.B. Ministerien), Körperschaften/Einrichtungen der Selbstverwaltung, Stiftungen, oder anderen Geldgebern?

2 = Angaben zu Mischfonds waren nicht erforderlich

3 = Hierzu wurden folgende Aspekte abgefragt: Mitgliedschaft/Funktion in Interessenvverbänden; Schwerpunkte wissenschaftlicher Tätigkeiten, Publikationen; Schwerpunkte klinischer Tätigkeiten; Federführende Beteiligung an Fortbildungen/Ausbildungsinstituten; Persönliche Beziehungen (als Partner oder Verwandter 1. Grades) zu einem Vertretungsberechtigten eines Unternehmens der Gesundheitswirtschaft; sonstige relevante Interessen
10. Verbreitung und Implementierung

Die abgestimmten Empfehlungen der aktualisierten LL wurden auf der Jahrestagung der Deutschen Gesellschaft für Senologie e. V. im Juni 2017 vorgestellt.

- Erstellung einer Kurzfassung
- Aktualisierung der Patientenleitlinie
- Veröffentlichung der LL-Dokumente auf den Internetseiten der DGGG, DGS, DKG sowie weiterer beteiligter Fachgesellschaften und Organisationen

Es wird explizit angeregt, unter Bezugnahme auf diese Publikationen die LL in die Anwendung zu überführen. Hierzu zählen z. B.:

- Umsetzung in Klinik und Praxis im Rahmen des Qualitätsmanagements z. B. über klinische lokale Behandlungspfade, Schulungen
- Umsetzung der Fraueninformation z. B. durch Postkartenformate, Internetdarstellungen, Broschüren, die lokal für die betroffenen verfügbar sind.

Die Verbreitung und Implementierung der LL wird weiterhin unterstützt durch:

- Öffentlichkeitswirksame Darstellung durch das Leitlinienprogramm Onkologie
- Pressemeldung an den Informationsdienst Wissenschaft idw (idw-online.de)
- Pressekonferenzen
- Beiträge zu Fachzeitschriften, Fachbüchern, Kongressen, Seminaren
- Erstellung von Materialien für die Fort- und Weiterbildung (CME-Beiträge).
11. Abbildungsverzeichnis

Abbildung 1: Übersicht der Leitlinienrecherche und des Auswahlprozesses .. 27

Abbildung 2: Schema zur Darstellung der kriteriengestützen Entscheidungsprozesse bei der Wahl des Empfehlungsgrades ... 37

Abbildung 3: Grafische Darstellung der Ergebnisse der Recherche SF 3.3-1 (Flussdiagramm) ..257
Abbildung 4: Grafische Darstellung der Ergebnisse der Recherche SF 3.3-2 (Flussdiagramm) ..267
Abbildung 5: Grafische Darstellung der Ergebnisse der Recherche SF 4.2-1 (Flussdiagramm) ..273
Abbildung 6: Grafische Darstellung der Ergebnisse der Recherche SF 4.5-1 (Flussdiagramm) ..279
Abbildung 7: Grafische Darstellung der Ergebnisse der Recherche SF 4.5-2 (Flussdiagramm) ..284
Abbildung 8: Grafische Darstellung der Ergebnisse der Recherche SF 4.6-1,2,3 (Flussdiagramm) 290
Abbildung 9: Grafische Darstellung der Ergebnisse der Recherche SF 4.7.5-1,2 (Flussdiagramm) 297
Abbildung 10: Grafische Darstellung der Ergebnisse der Recherche SF 5.3-1 (Flussdiagramm) 305
Abbildung 11: Grafische Darstellung der Ergebnisse der Recherche SF 5.4-1 (Flussdiagramm) 313
Abbildung 12: Grafische Darstellung der Ergebnisse der Recherche SF 5.4-2 (Flussdiagramm) 325
Abbildung 13: Grafische Darstellung der Ergebnisse der Recherche SF 5.4-3 (Flussdiagramm) 332
Abbildung 14: Grafische Darstellung der Ergebnisse der Recherche SF 6.4-1 (Flussdiagramm) 337
Abbildung 15: Grafische Darstellung der Ergebnisse der Recherche SF Schwanger 1 (Flussdiagramm) .. 342
Abbildung 16: Grafische Darstellung der Ergebnisse der Recherche SF Schwanger 2 (Flussdiagramm) .. 348
Abbildung 17: Grafische Darstellung der Ergebnisse der allgemeinen Recherche Ältere Patientin (Flussdiagramm) .. 353
12. Tabellenverzeichnis

Tabelle 1: Mitglieder der Leitlinien-Steuergruppe in alphabetischer Reihenfolge 11
Tabelle 2: Beteiligte Fachgesellschaften und Organisationen .. 13
Tabelle 3: Experten in beratender Funktion ohne Stimmberechtigung .. 15
Tabelle 4: Arbeitsgruppen und deren Mitglieder ... 17
Tabelle 5: Liste der Schlüsselfragen für die De-novo Recherche .. 21
Tabelle 6: Ein- und Ausschlusskriterien für die Recherche nach Leitlinien ... 24
Tabelle 7: Ergebnis der Bewertung der methodischen Qualität mittels AGREE II 28
Tabelle 9: verwendete Empfehlungsgrade .. 35
Tabelle 10: Festlegungen hinsichtlich der Konsensstärke ... 38
Tabelle 11: Übersicht über Kommentare und resultierende Anpassungen aus der Konsultationsphase
der S3-LL Mammakarzinom. Aufgeführt werden an dieser Stelle ausschließlich inhaltliche Anmerkungen zu Empfehlungen bzw. Statements .. 71
Tabelle 12: Übersicht über Kommentare und resultierende Anpassungen aus der Konsultationsphase
der S3-LL Mammakarzinom. Aufgeführt werden an dieser Stelle ausschließlich inhaltliche Anmerkungen zum Hintergrundtext .. 82
Tabelle 13: Empfehlungen und Statements mit Enthaltungen aufgrund von Interessenskonflikten 123
Tabelle 14: Ergebnisse der Interessenskonfliktklärungen .. 125
Tabelle 15: Fragestellung Kapitel 3.3 Frauen mit erhöhtem Risiko für Brustkrebs zum Thema Genpanel
- Früherkennung (Schlüsselfrage 3.3-1) .. 170
Tabelle 16: Fragestellung Kapitel 3.3 Frauen mit erhöhtem Risiko für Brustkrebs zum Thema Genpanel
- Operative Maßnahmen (Schlüsselfrage 3.3-2) ... 171
Tabelle 17: Fragestellung Kapitel 4.2 Prätherapeutische Ausbreitungsdagnostik bei Patientinnen mit auffälligen bzw. suspekten Befunden der Mamma zum Thema Biopsienadel (Schlüsselfrage 4.2-1) .. 172
Tabelle 18: Fragestellung Kapitel 4.5 Pathomorphologische Untersuchung zum Thema Multigentests (Schlüsselfrage 4.5-1) .. 173
Tabelle 19: Fragestellung Kapitel 4.5 Pathomorphologische Untersuchung zum Thema Ki-67 (Schlüsselfrage 4.5-2) ... 174
Tabelle 20: Fragestellung Kapitel 4.6 Adjuvante Strahlentherapie zum Thema Lymphabflussgebiete (Schlüsselfrage 4.6-1) .. 175

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019
Tabelle 21: Fragestellung Kapitel 4.6 Adjuvante Strahlentherapie zum Thema Teilbrustbestrahlung (Schlüsselfrage 4.6-2) .. 176

Tabelle 22: Fragestellung Kapitel 4.6 Adjuvante Strahlentherapie zum Thema Hypofraktionierung (Schlüsselfrage 4.6-3) .. 177

Tabelle 23: Fragestellung Kapitel 4.7.5 Antikörpertherapien - Neoadjuvant zum Thema Trastuzumab bei kleinen HER2-positiven Tumoren (Schlüsselfrage 4.7.5-1) .. 178

Tabelle 24: Fragestellung Kapitel 4.7.5 Antikörpertherapien - Neoadjuvant zum Thema Dauer von Trastuzumab bei HER2-positiven Tumoren (Schlüsselfrage 4.7.5-2) 179

Tabelle 25: Fragestellung Kapitel 5.3 Therapie des lokoregionalen Rezidivs zum Thema Systemtherapie (Schlüsselfrage 5.3-1) .. 180

Tabelle 26: Fragestellung Kapitel 5.4 Fernmetastasen - Spezielle Metastasenlokalisation zum Thema Hirnmetastasen (Schlüsselfrage 5.4-1) .. 181

Tabelle 27: Fragestellung Kapitel 5.4 Fernmetastasen - Spezielle Metastasenlokalisation zum Thema Lebermetastasen (Schlüsselfrage 5.4-2) ... 182

Tabelle 28: Fragestellung Kapitel 5.4 Fernmetastasen - Chemo/targeted zum Thema Chemotherapie (Schlüsselfrage 5.4-3) .. 183

Tabelle 29: Fragestellung Kapitel 6.4 Nachsorge zum Thema Ultraschall in der Nachsorge (Schlüsselfrage 6.4-1) .. 184

Tabelle 30: Fragestellung Kapitel Mammakarzinom und Schwangerschaft zum Thema Brustkrebs während der Schwangerschaft (SF Schwanger 1) ... 185

Tabelle 31: Fragestellung Kapitel Mammakarzinom und Schwangerschaft zum Thema Schwangerschaft nach Brustkrebs (SF Schwanger 2) .. 186

Tabelle 32: Evidenztabelle zur Schlüsselfrage SF 4.5-1 Multigentests .. 201

Tabelle 33: Evidenztabelle zur Schlüsselfrage SF 4.5-2 Ki-67 ... 205

Tabelle 34: Evidenztabelle zur Schlüsselfrage SF 4.6-1 Lymphabflussgebiet-Bestrahlung ... 210

Tabelle 35: Evidenztabelle zur Schlüsselfrage SF 4.6-2 Teilbrustbestrahlung .. 211

Tabelle 36: Evidenztabelle zur Schlüsselfrage 4.6-3 Hypofraktionierung .. 216

Tabelle 37: Evidenztabelle zur Schlüsselfrage SF 4.7.5-1 Trastuzumab - Tumorgröße < 1 cm 221

Tabelle 38: Evidenztabelle zur Schlüsselfrage SF 4.7.5-2 Trastuzumab - Dauer .. 222

Tabelle 39: Evidenztabelle zur Schlüsselfrage SF 5.3-1 Lokoregionales Rezidiv .. 224

Tabelle 40: Evidenztabelle zur Schlüsselfrage SF 5.4-2 Lebermetastasen .. 225

Tabelle 41: Evidenztabelle zur Schlüsselfrage SF 5.4-3 Chemoregime .. 227

Tabelle 42: Evidenztabelle zur Schlüsselfrage SF 6.4-1 zum Thema Ultraschall .. 231

Tabelle 43: Evidenztabelle zur Schlüsselfrage Schwanger 1 zum Thema Mammakarzinom während der Schwangerschaft (SF Schwanger 1) .. 233
Tabelle 44: Evidenztabelle zur Schlüsselfrage Schwanger 2 zum Thema Schwangerschaft nach Mammakarzinom (SF Schwanger 2) ... 237
Tabelle 45: Evidenztabelle zum Thema Mammakarzinom der älteren Patientin 246
Tabelle 46: Recherchestrategie der SF 3.3-1 in MEDLINE (via Ovid) (8. Juli 2016) 253
Tabelle 47: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 3.3-1) 256
Tabelle 48: Recherchestrategie SF 3.3-2 in MEDLINE (via Ovid) (17. Juli 2016) 263
Tabelle 49: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 3.3-2) 266
Tabelle 50: Recherchestrategie SF 4.2-1 in MEDLINE (via Ovid) (25. August 2016) 271
Tabelle 51: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 4.2-1) 272
Tabelle 52: Recherchestrategie SF 4.5-1 in MEDLINE (via Ovid) (14. Juni 2016) 276
Tabelle 54: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 4.5-2) 283
Tabelle 55: Recherchestrategie SF 4.6-1,2,3 in MEDLINE (via Ovid) (13. Juli 2016) 287
Tabelle 56: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 4.6-1,2,3) 289
Tabelle 57: Recherchestrategie SF 4.7.5-1,2 in MEDLINE (via Ovid) (24. August 2016) 295
Tabelle 58: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 4.7.5-1,2) 296
Tabelle 59: Recherchestrategie SF 5.3-1 in MEDLINE (via Ovid) (29. Juni 2016) 299
Tabelle 60: Recherchestrategie SF 5.3-1 in MEDLINE (via Ovid) (29. Juni 2016) 300
Tabelle 61: Recherchestrategie SF 5.3-1 in MEDLINE (via Ovid) (08. Juli.2016) 303
Tabelle 62: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 5.3-1) 304
Tabelle 63: Recherchestrategie SF 5.4-1 in MEDLINE (via Ovid) (06. April 2016) 308
Tabelle 64: Recherchestrategie SF 5.4-1 in MEDLINE (via Ovid) (21. April 2016) 310
Tabelle 65: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 5.4-1) 312
Tabelle 66: Recherchestrategie SF 5.4-2 in MEDLINE (via Ovid) (19. April 2016) 319
Tabelle 67: Recherchestrategie SF 5.4-2 in MEDLINE (via Ovid) (12. Mai 2016) 322
Tabelle 68: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 5.4-2) 324
Tabelle 69: Recherchestrategie SF 5.4-3 in MEDLINE (via Ovid) (28. Juli 2016) 330
Tabelle 70: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 5.4-3) 331
Tabelle 71: Recherchestrategie SF 6.4-1 in MEDLINE (via Ovid) (10. Juni 2016) 335
Tabelle 72: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 6.4-1) 336
Tabelle 73: Recherchestrategie SF Schwanger1 in MEDLINE (via Ovid) (23. August 2016) 340
Tabelle 74: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF Schwanger1)............... 341
Tabelle 75: Recherchestrategie SF Schwanger 2 in MEDLINE (via Ovid) (24. August 2016) 344
Tabelle 76: Recherchestrategie SF Schwanger 2 in MEDLINE (via Ovid) (02. November 2016)... 346
Tabelle 77: Recherchestrategie Kapitel Ältere Patientin in MEDLINE (via Ovid) (23.08.2016) 351
13. Anhang

13.1. Änderungen im Rahmen der Aktualisierung 2017

<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zu 3. Allgemein</td>
<td>Der Wunsch der Patientin, das Gespräch oder auch weitere Gespräche gemeinsam mit einer Vertrauensperson (Partner, Angehörige, Patientenvertreterinnen) zu führen, sollte erfragt werden. (3.1.)</td>
</tr>
<tr>
<td>Zu 3.1. Patientinneninformation und -aufklärung</td>
<td>Die medizinische Aufklärung der Patientin ist primär Aufgabe des Arztes, sie sollte jedoch bei spezifischen Themen durch andere Berufsgruppen wie Pflege, Psychoonkologen etc. unterstützt werden. (3.2.)</td>
</tr>
<tr>
<td>Qualifizierte und sachdienliche Informationsmaterialien (Print- oder Internetmedien) sollen nach definierten Qualitätskriterien für Gesundheitsinformationen erstellt und Patientinnen zur Verfügung gestellt werden, um sie durch eine verständliche Risikokommunikation (z. B. Angabe von absoluten Risikoreduktionen) in ihrer selbstbestimmten Entscheidung für oder gegen medizinische Maßnahmen zu unterstützen. (Info-1)</td>
<td>Evidenzbasierte Gesundheitsinformationen (EBGI) hat zum Ziel informierte Entscheidungen zu verbessern. Deshalb soll EBGI nach definierten Qualitätskriterien erstellt werden. Wenn vorhanden, dann sollten sie der Patientin auch zur Verfügung gestellt werden. (3.3.)</td>
</tr>
<tr>
<td>Als Inhalte eines Therapieaufklärungsgesprächs sollten in jedem Fall folgende Punkte angesprochen werden: · Operative Therapie: Möglichkeiten der brusterhaltenden Operation mit obligater Radiotherapie als gleichwertig zur ablative Therapie mit unterschiedlichen Varianten einer primären und sekundären</td>
<td>Als Inhalte eines Therapieaufklärungsgesprächs sollten folgende Punkte angesprochen und Informationen zum Nutzen und Schaden kommuniziert werden: · Operative Therapie: Möglichkeiten der brusterhaltenden Operation mit obligater Radiotherapie als gleichwertig zur ablative Therapie mit unterschiedlichen Varianten einer primären und sekundären Rekonstruktion oder der Versorgung mit einer äußeren Prothese</td>
</tr>
<tr>
<td>Version 2012</td>
<td>Version 2017</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Rekonstruktion oder der Versorgung mit einer äußeren Prothese</td>
<td>· Systemische Therapie: Prinzipien und die angestrebten Behandlungsziele einer (neo-)adjuvanten oder palliativen Therapie, Dauer und die Durchführung der Therapie, ihre Nebenwirkungen und mögliche Spätschäden sowie über die Behandlungsmöglichkeiten der Nebenwirkungen</td>
</tr>
<tr>
<td>· Systemische Therapie: Prinzipien und die angestrebten Behandlungsziele einer (neo-)adjuvanten oder palliativen Therapie, Dauer und die Durchführung der Therapie, ihre Nebenwirkungen und mögliche Spätschäden sowie über die Behandlungsmöglichkeiten der Nebenwirkungen</td>
<td>· Strahlentherapie: Prinzipien und die angestrebten Behandlungsziele, Dauer und Nachbeobachtung, mögliche Akut- und Spätschäden, Behandlungsmöglichkeiten der Nebenwirkungen</td>
</tr>
<tr>
<td>· Strahlentherapie: Prinzipien und die angestrebten Behandlungsziele, Dauer und Nachbeobachtung, mögliche Akut- und Spätschäden, Behandlungsmöglichkeiten der Nebenwirkungen</td>
<td>· Teilnahme an klinischen Studien, Prinzipien und die angestrebten Behandlungsziele, Dauer und die Durchführung der Therapie; bisher bekannte Wirkungen und Nebenwirkungen, Besonderheiten (Monitoring, zusätzliche Maßnahmen, Mitwirkung, Datenspeicherung und -verarbeitung)</td>
</tr>
<tr>
<td>· Teilnahme an klinischen Studien, Prinzipien und die angestrebten Behandlungsziele, Dauer und Durchführung der Therapie; bisher bekannte Wirkungen und Nebenwirkungen, Besonderheiten (Monitoring, zusätzliche Maßnahmen, Mitwirkung, Datenspeicherung und -verarbeitung)</td>
<td>· Sonstige: Möglichkeiten der Prophylaxe und Behandlung therapiebedingter Neben- und Folgewirkungen (z. B. Fatigue, Übelkeit, Osteoporose, Lymphödem etc.), Notwendigkeit der Nachsorge, Möglichkeiten der Rehabilitation, psychoonkologische Unterstützung sowie Leistungen der Selbsthilfegruppen, Aspekte der Eigenverantwortung und Mitwirkung (z. B. Mitteilung von Symptomen und Problemen, Therapiecompliance).</td>
</tr>
<tr>
<td>· Sonstige: Möglichkeiten der Prophylaxe und Behandlung therapiebedingter Nebenwirkungen (z. B. Emesis, Osteoporose, Lymphödem etc.), Notwendigkeit der Nachsorge, Möglichkeiten der Rehabilitation, psychoonkologische Unterstützung sowie Leistungen der Selbsthilfegruppen, Aspekte der Eigenverantwortung und Mitwirkung (z. B. Mitteilung von Symptomen und Problemen, Therapiecompliance)</td>
<td>(3.5.)</td>
</tr>
</tbody>
</table>

-- Informations- und Aufklärungsbedürfnisse bei Langzeitüberlebenden sollten exploriert werden und entsprechende Unterstützungsangebote sowie gesundheitsfördernden Maßnahmen bei Folgestörungen wie neurokognitive Einschränkungen, Fatigue, Angst, Depression, Polyneuropathie, Übergewicht, etc. vermittelt werden. |

(3.6.) Frauen und Männer mit Brustkrebs sind in ihrem Recht auf Selbstbestimmung zu bestärken und durch praktische Hilfestellungen zu unterstützen.
13.1. Änderungen im Rahmen der Aktualisierung 2017

<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es liegt im Ermessen der Betroffenen, ob Selbsthilfevertreter in medizinische Beratungen und Aufklärungsgespräche einbezogen werden. Über Kontaktmöglichkeiten zu Selbsthilfeanbietern sollte informiert werden. Informationsmaterialien sollten von den Leistungsanbietern vorgehalten werden. (3.7.)</td>
<td></td>
</tr>
</tbody>
</table>

Zu 3.2 Früherkennung, Mammographiescreening

Krebsregister sind ein ebenso wichtiges wie notwendiges Element für die Evaluation und Qualitätssicherung der Brustkrebs-Früherkennung. Alle Patientinnen, bei denen eine Brustkrebserkranckung diagnostiziert wurde, sollen daher mit den relevanten Angaben zum Primärbefund und zur Primärtherapie an ein Krebsregister gemeldet werden. Die Krebsregister tragen mit bevölkerungsbezogenen und regional aufgegliederten Analysen der Tumorstadien und des Langzeit-Follow-ups (Rezidive und Überleben) zur Evaluation und Qualitätssicherung bei. Beim Start oder Änderung eines Programms zur Früherkennung sollten Baslinedaten für die Zeit vorher zur Verfügung stehen. (Früh 1c.)

GESTRICHEN

Ein Früherkennungsprogramm soll kontinuierlich hinsichtlich relevanter Ergebnisse (z.B. Inzidenz, Mortalität, Morbidität und patientenbezogener Outcomes) und Risiken (z. B. falsch positive und falsch negative Befunde, Überdiagnosen) evaluiert werden. Dafür sind die Prozessdaten des Screening-Programms, der Brustzentren und die
<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Änderungen im Rahmen der Aktualisierung 2017</td>
<td>Daten der bevölkerungsbezogenen Krebsregister der Bundesländer nach dem Abgleich zusammen zu nutzen. Krebsregister sollen für das jeweilige Bundesland und die Screening-Einheiten die differenzierten Daten kontinuierlich bereitstellen, wo möglich vor und ab Beginn des Nationalen Screening-Programms in 2005. Patientenlisten z.B. von Intervallkarzinomen, kontralateralen Befunden oder Lokalrezidiven sind Teil der kontinuierlichen Evaluation. Die Unabhängigkeit der Evaluation soll sichergestellt sein.</td>
</tr>
<tr>
<td>Zur Sicherung einer bestmöglichen Behandlung soll die weiterführende Therapie von im Screening detektiertem Mammakarzinom in zertifizierten Brustzentren erfolgen. Die kontinuierliche Qualitätssicherung soll durch Kommunikation und Datenerfassung zwischen Screeningzentrum und zertifiziertem Brustzentrum gesichert werden.</td>
<td>(3.9 d.)</td>
</tr>
<tr>
<td>Früherkennungsuntersuchungen können zu einer körperlichen und psychischen Belastung führen. Dieser Umstand ist durch eine sorgfältige Aufklärung und effektive Kommunikationsstrategie dringend Rechnung zu tragen. (Früh-1d.)</td>
<td>Früherkennungsuntersuchungen können zu einer körperlichen und psychischen Belastung führen. Dieser Umstand soll durch eine sorgfältige Aufklärung und effektive Kommunikationsstrategie berücksichtigt werden. (3.10 a.)</td>
</tr>
<tr>
<td>Das Ergebnis der Früherkennungsmaßnahmen und die Lebensqualität sollten langfristig erfasst und bewertet werden unter besonderer Berücksichtigung von erhobenen falsch-positiven und falsch-negativen Befunden im Rahmen der Diagnosekette. (Früh-1f.)</td>
<td>GESTRICHTEN</td>
</tr>
<tr>
<td>Im Rahmen der gesetzlichen Krebsfrüherkennung sollte den Frauen ein Anamnese- und Aufklärungsgespräch über mögliche Risikofaktoren angeboten werden. (Früh-1g.)</td>
<td>Im Rahmen der gesetzlichen Krebsfrüherkennung soll den Frauen ein Anamnese- und Aufklärungsgespräch über mögliche Risikofaktoren angeboten werden. (3.12 a.)</td>
</tr>
</tbody>
</table>
Version 2012

Der wichtigste populationsbezogene Risikofaktor für eine Brustkrebsentstehung ist das fortgeschrittene Alter.

(Früh-1.h.)

Hohe mammographische Dichte (ARC III und IV) ist neben der BRCA1/2-Mutation höchster individueller Risikofaktor, sodass die in dieser Situation begrenzte Sensitivität der Mammographie durch eine sie ergänzende Sonographie angehoben werden sollte.

(Früh-1.i.)

Auch Frauen ab dem Alter von 70 Jahren kann die Teilnahme an Früherkennungsmaßnahmen unter Berücksichtigung des individuellen Risikoprofils, des Gesundheitsstatus und der Lebenserwartung angeboten werden.

(Früh-1.j.)

Frauen mit einer Mutation in den Genen BRCA1 oder BRCA2 oder mit einem hohen Risiko, definiert als ein Heterozygotenrisiko > 20 % oder einem verbleibenden Lebenszeitrisiko von >/= 30 %, sollten in den spezialisierten Zentren für erblichen Brust- und Eierstockkrebs beraten und hinsichtlich einer individuellen Früherkennungsstrategie betreut werden.

(Früh-1.k.)

Version 2017

Der wichtigste populationsbezogene Risikofaktor für eine Brustkrebsentstehung ist bei Frauen und Männern das fortgeschrittene Alter.

(3.8 a.)

GESTRICHTEN

GESTRICHTEN

Bei Patientinnen mit einer pathogenen BRCA1/2-Mutation (IARC class 4/5) sollte und bei Patientinnen mit einem verbleibenden Lebenszeitrisiko von >/= 30 % kann eine intensivierte Früherkennung unter Hinzunahme des MRT nur im Rahmen einer transparenten Qualitätssicherung und entsprechender Evaluation erfolgen.

Die zusätzliche Mammographie ab dem 40. Lebensjahr sollte im Rahmen einer transparenten Qualitätssicherung und entsprechender Evaluation erfolgen.

(3.17.)

Die Mammographie ist die einzige Methode mit gesicherter Reduktion der Brustkrebsmortalität.

(3.11 a.)

Für Frauen zwischen dem 50. und 69. Lebensjahr soll die Teilnahme am Nationalen Mammographie Screening Programm empfohlen werden. Frauen ab dem Alter von 70 Jahren sollte die Teilnahme an Früherkennungsmaßnahmen unter Berücksichtigung des individuellen Risikoprofils
<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumorstadien allgemein als wirksam anerkannte Methode. (Früh-11.)</td>
<td>und des Gesundheitsstatus sowie einer mehr als 10-jährigen Lebenserwartung angeboten werden. (3.11 b.)</td>
</tr>
<tr>
<td>Durch qualifizierte Informationen sollten Frauen angeregt werden, sich mit den normalen Veränderungen des eigenen Körpers vertraut zu machen. Hierzu zählen das Aussehen und das Gefühl der Brust, um Abweichungen selbst festzustellen. (Früh-1n.)</td>
<td>Durch qualifizierte Informationen sollten Frauen angeregt werden, sich mit den normalen Veränderungen des eigenen Körpers vertraut zu machen. Hierzu zählen das Aussehen und das Gefühl der Brust, um Abweichungen selbst festzustellen. (3.12 c.)</td>
</tr>
<tr>
<td>Die klinische Brustuntersuchung, das heißt Palpation, Inspektion der Brust und Beurteilung des Lymphabflusses, sollte im Rahmen der gesetzlichen Früherkennungsuntersuchungen Frauen ab dem Alter von 30 Jahren jährlich angeboten werden. (Früh-1o.)</td>
<td>Die klinische Brustuntersuchung, das heißt Inspektion, Palpation der Brust und Beurteilung des Lymphabflusses, sollte im Rahmen der gesetzlichen Früherkennungsuntersuchungen Frauen ab dem Alter von 30 Jahren angeboten werden. Als alleinige Methode zur Brustkrebsfrüherkennung soll die klinische Untersuchung der Brust und Axilla nicht empfohlen werden. (3.12 d.)</td>
</tr>
<tr>
<td>Als alleinige Methode zur Früherkennung ist die Sonographie nicht geeignet. (Früh-1p.)</td>
<td>Als alleinige Methode zur Brustkrebsfrüherkennung kann der systematische Einsatz von Sonographie nicht empfohlen werden. (3.12 e.)</td>
</tr>
</tbody>
</table>
| KM-MRT sollte als ergänzende Methode bei familiär erhöhtem Risiko (Mutationsträgerinnen BRCA1 oder BRCA2, oder bei hohem Risiko definiert als ein Heterozygotenrisiko > 20 % oder einem verbleibenden lebenslangen Erkrankungsrisiko > 30 %) durchgeführt werden. (Früh-1q.) | In der diagnostischen Situation sollte die KM-MRT auf diejenigen Fälle eingegrenzt werden, die mit konventioneller Diagnostik (MG, US) sowie perkutaner Biopsie nicht ausreichend sicher gelöst werden können. (4.4 a.)
Die Durchführung einer prätherapeutischen KM-MRT bei einem diagnostizierten Mammakarzinom ist nur in begründeten Fällen sinnvoll. Die Indikation hierzu sollte in einer multidisziplinären Konferenz gestellt werden. (4.4 b.)
Eine KM-MRT der Mamma soll nur dort erfolgen, wo die Möglichkeit einer MRT-gestützten Intervention vorhanden bzw. verbindlich geregelt ist und die histologischen Ergebnisse der MR-Intervention in einer multidisziplinären Konferenz
Änderungen im Rahmen der Aktualisierung 2017

Version 2012

<table>
<thead>
<tr>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>im Sinne der Dokumentation der Ergebnisqualität vorgestellt werden. (4.4 c.)</td>
</tr>
</tbody>
</table>

Die Doppelbefundung bei Screening-Mammographien erhöht die Sensitivität der Karzinomdeckung um 2,9 – 13,7 % (Median 7,8 %). Die Spezifität kann – abhängig vom Entscheidungsverfahren nach Doppelbefundung – erniedrigt (bis zu 2,1 %) oder erhöht (bis 2,8 %) sein. (Früh-2b.)

Ob der Einsatz von Computerassistierten Detektions-Systemen die Doppelbefundung ersetzen kann, kann aufgrund der Studienlage bisher nicht eindeutig beantwortet werden. (Früh-2c.)

Die Struktur-, Prozess- und Ergebnisqualität sind für die Mammographie im Rahmen des Mammographie-Screenings für Frauen im Alter von 50 bis 69 Jahren geregelt. (Früh-2d.)

Struktur-, Prozess- und Ergebnisqualität sollen in entsprechendem Ausmaß auch für die sogenannte kurative Mammographie angewandt werden. (Früh-2e.)

Nach Erhebung eines mammographischen Befundes BI-RADS 0, III, IV und V sollte die weitere Abklärung innerhalb von 5 Arbeitstagen erfolgen, um die psychischen Belastungen der Frau möglichst gering zu halten. (Früh-2f.)

Bei der interventionellen, vorzugsweise sonographisch gesteuerten Stanzbiopsie sollten ≥ 3 Proben bei ≤ 14 G entnommen werden. (Früh-3a.)

Version 2017

<table>
<thead>
<tr>
<th>GESTRICHTEN</th>
</tr>
</thead>
</table>

GESTRICHTEN

Die Struktur-, Prozess- und Ergebnisqualität sollen in entsprechendem Ausmaß auch für die sogenannte kurative Mammographie angewandt werden. (3.11 d.)

Nach Erhebung eines mammographischen Befundes der Kategorien 0, III, IV und V sollte die weitere Abklärung innerhalb von einer Woche erfolgen, um die psychischen Belastungen der Frau möglichst gering zu halten. (3.11 e.)

Bei der interventionellen, vorzugsweise sonographisch gesteuerten Stanzbiopsie sollten ≥ 3 Proben bei ≤ 14 G bei nachweisbarer Zielerfassung der Stanznadel entnommen werden. (4.5 i.)
Version 2012

<table>
<thead>
<tr>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die stereotaktische Vakuumbiopsie soll standardisiert erfolgen. Der Zugangsweg und die Nadelpositionierung („stroke margin“) sind zu dokumentieren.</td>
</tr>
<tr>
<td>GESTRICHEN</td>
</tr>
<tr>
<td>Die Exzision ausschließlich sonographisch detektiert Befunde soll durch eine intraoperative Präparatsonographie kontrolliert werden.</td>
</tr>
<tr>
<td>GESTRICHEN</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>(3.13 a.)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Die Evidenz bezüglich des Einsatzes ergänzender bildgebender Methoden ist begrenzt. Außerhalb der Hochrisiko-Situation erscheint derzeit die Sonographie als die für die Ergänzung der Mammographie geeignete Methode. Die Sonographie kann die dichteabhängige Sensitivität erhöhen, eine Mortalitätsreduktion hierdurch ist nicht belegt. In der Früherkennung ist sie mit einer höheren Rate an Biopsien als das Nationale Mammographie Screening Programm verbunden.</td>
</tr>
<tr>
<td>(3.13 b)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Die Tomosynthese kann die Sensitivität erhöhen. Ihre Erprobung in einem qualitätsgesicherten Programm sollte erwogen werden.</td>
</tr>
<tr>
<td>(3.13 c.)</td>
</tr>
</tbody>
</table>

Zu 3.3 Frauen mit erhöhtem Risiko für Brustkrebs

Eine multidisziplinäre Beratung und genetische Testung soll in speziellen Zentren angeboten werden, wenn in einer Linie der Familie

- mindestens 3 Frauen an Brustkrebs erkrankt sind

Eine genetische Untersuchung sollte angeboten werden, wenn eine familiäre bzw. individuelle Belastung vorliegt, die mit einer mindestens 10 %-igen Mutationsnachweis wahrscheinlichkeit einhergeht.

Dies trifft zu, wenn in einer Linie der Familie

- mindestens 3 Frauen an Brustkrebs erkrankt sind
<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>• mindestens 2 Frauen an Brustkrebs erkrankt sind, davon 1 vor dem 51. Lebensjahr</td>
<td>• mindestens 2 Frauen an Brustkrebs erkrankt sind, davon 1 vor dem 51. Lebensjahr</td>
</tr>
<tr>
<td>• mindestens 1 Frau an Brustkrebs und 1 Frau an Eierstockkrebs erkrankt sind</td>
<td>• mindestens 1 Frau an Brustkrebs und 1 Frau an Eierstockkrebs erkrankt sind</td>
</tr>
<tr>
<td>• mindestens 2 Frauen an Eierstockkrebs erkrankt sind</td>
<td>• mindestens 2 Frauen an Eierstockkrebs erkrankt sind</td>
</tr>
<tr>
<td>• mindestens 1 Frau an Brust- und Eierstockkrebs erkrankt ist</td>
<td>• mindestens 1 Frau an Brust- und Eierstockkrebs erkrankt ist</td>
</tr>
<tr>
<td>• mindestens 1 Frau mit 35 Jahren oder jünger an Brustkrebs erkrankt ist</td>
<td>• mindestens 1 Frau mit 35 Jahren oder jünger an Brustkrebs erkrankt ist</td>
</tr>
<tr>
<td>• mindestens 1 Frau mit 50 Jahren oder jünger an bilateralem Brustkrebs erkrankt ist</td>
<td>• mindestens 1 Frau mit 50 Jahren oder jünger an bilateralem Brustkrebs erkrankt ist</td>
</tr>
<tr>
<td>• mindestens 1 Mann an Brustkrebs und eine Frau an Brust- oder Eierstockkrebs erkrankt sind</td>
<td>• mindestens 1 Mann an Brustkrebs und eine Frau an Brust- oder Eierstockkrebs erkrankt sind</td>
</tr>
</tbody>
</table>

(Risk-1)

Es ist eine angemessene Bedenkzeit vor Durchführung der Diagnostik zu beachten.

(3.14.)

Bei der Risikoberatung vor genetischer Testung sollten insb. folgende Inhalte berücksichtigt werden:

- Wahrscheinlichkeit für das Vorliegen einer Mutation
- Erkrankungsrisiken bei positivem Befund
- Nutzen und Schaden präventiver und therapeutischer Optionen einschließlich der Option nichts zu tun
- Wahrscheinlichkeit falsch negativer Befunde
- Bedeutung der genetischen Testung für die Familienangehörigen

Nach Erhalt des Genbefundes sollten bei der Risikoberatung vor dem Angebot präventiver Maßnahmen insbesondere folgende Inhalte vertieft werden:
Version 2012

- Erkrankungsrisiko in Abhängigkeit vom genetischen Befund, Alter und Begleiterkrankungen (natürlicher Verlauf)
- Wahrscheinlichkeit für falsch positive und falsch negative Testergebnisse der intensivierten Früherkennung
- Nutzen der präventiven Optionen (intensivierte Früherkennung, prophylaktische Operationen, medikamentöse Therapien) hinsichtlich Mortalitätsreduktion, Morbiditätsreduktion und Lebensqualität
- Risiken der präventiven Optionen einschließlich Langzeitfolgen
- Konkurrierende Risiken, Prognose und Therapierbarkeit im Falle eines Krankheitseintrittes ohne präventive Maßnahmen unter Berücksichtigung des spezifischen Erscheinungsbildes des genetisch definierten Tumorsubtyps
- Ggf. Risiken für assoziierte Tumoren
- Psychoonkologische Beratungsangebote (3.15.)

BRCA1-assoziierte Mammakarzinome weisen häufig einen charakteristischen histopathologischen und immunhistochemischen Phänotyp auf:

- invasives Karzinom (NOS) mit einem Wachstumsmuster ähnlich dem medullären Karzinom
- G3-Morphologie
- Östrogenrezeptor-, Progesteronrezeptor- und HER2/neu-Negativität (triple-negativ)

(Risk-2a.)

Bei Vorliegen dieser Charakteristika sollte vom Pathologen auf die Möglichkeit eines erblichen Hintergrunds hingewiesen werden.

(Risk-2b.)

Die Früherkennungsmaßnahmen bei Patientinnen mit hohem* familiärem Risiko umfassen:

Version 2017

- Erkrankungsrisiko in Abhängigkeit vom genetischen Befund, Alter und Begleiterkrankungen (natürlicher Verlauf)
- Wahrscheinlichkeit für falsch positive und falsch negative Testergebnisse der intensivierten Früherkennung
- Nutzen der präventiven Optionen (intensivierte Früherkennung, prophylaktische Operationen, medikamentöse Therapien) hinsichtlich Mortalitätsreduktion, Morbiditätsreduktion und Lebensqualität
- Risiken der präventiven Optionen einschließlich Langzeitfolgen
- Konkurrierende Risiken, Prognose und Therapierbarkeit im Falle eines Krankheitseintrittes ohne präventive Maßnahmen unter Berücksichtigung des spezifischen Erscheinungsbildes des genetisch definierten Tumorsubtyps
- Ggf. Risiken für assoziierte Tumoren
- Psychoonkologische Beratungsangebote (3.15.)

BRCA1-assoziierte Mammakarzinome weisen häufig einen charakteristischen histopathologischen und immunhistochemischen Phänotyp auf:

- invasives Karzinom mit medullären Eigenschaften
- G3-Morphologie
- Östrogenrezeptor-, Progesteronrezeptor- und HER2-Negativität (triple-negativ)

(3.16 a.)

Bei Vorliegen dieser Charakteristika sollte vom Pathologen auf die Möglichkeit eines erblichen Hintergrunds hingewiesen werden.

(3.16 b.)

GESTRICHTEN
13.1. Änderungen im Rahmen der Aktualisierung 2017

Version 2012

- Tastuntersuchung der Brust durch den Arzt (alle 6 Monate; ab dem 25. Lebensjahr oder 5 Jahre vor dem frühesten Erkrankungsalter in der Familie)
- Sonographie der Brust (alle 6 Monate; ab dem 25. Lebensjahr oder 5 Jahre vor dem frühesten Erkrankungsalter in der Familie)
- Mammographie der Brust (alle 12 Monate; ab dem 30. Lebensjahr, bei hoher Brustdrüsentätigkeit (ACR IV) ab dem 35. Lebensjahr)
- MRT der Brust (alle 12 Monate; ab dem 25. Lebensjahr oder 5 Jahre vor dem frühesten Erkrankungsalter in der Familie, in der Regel nur bis zum 55. Lebensjahr oder bis zur Involution des Drüsenparenchyms (ACR I-II), zyklusabhängig bei prämenopausalen Frauen).

* d.h. nachgewiesene pathogene BRCA1- oder BRCA2-Mutation, oder ein verbleibendes Erkrankungsrisiko von 30 % und mehr oder ein Heterozygotenrisiko von 20 % und mehr.

(Risk-3)

Die Therapie des BRCA-assoziierten Mammakarzinoms richtet sich nach den Leitlinienempfehlungen für das sporadische Mammakarzinom.

(Risk-4)

Version 2017

- Die operative Therapie des BRCA-assoziierten Mammakarzinoms richtet sich nach den Leitlinienempfehlungen für das sporadische Mammakarzinom.
- Die Mastektomie hat keinen Vorteil im Vergleich zur brusterhaltenden Operation.
- Die medikamentöse Therapie des BRCA-assoziierten Mammakarzinoms richtet sich nach den Leitlinienempfehlungen für das sporadische Mammakarzinom

(3.18.)

Es gibt Hinweise darauf, dass eine platinhaltige Chemotherapie im Vergleich zu einer Standard-Chemotherapie zu einem besseren Therapieansprechen führen kann.

(3.18. b)

Frauen mit BRCA1- oder BRCA2-Genmutation sollte eine bilaterale prophylaktische Mastektomie angeboten werden. Eine prophylaktische beidseitige Salpingo-

Bei Frauen ohne nachgewiesene BRCA1 oder BRCA2 Genmutation ist der Nutzen einer prophylaktischen oder sekundär prophylaktischen kontralateralen Mastektomie nicht nachgewiesen.
Oophorektomie (i.d.R. um das 40. Lebensjahr) wird empfohlen. (Risk-5)

Version 2012

Version 2017

- Gesunde Frauen mit einer BRCA1 oder BRCA2 Mutation haben ein lebenszeitlich erhöhtes Risiko für die Entwicklung eines Mammakarzinoms.

Daher setzt eine Einzelfallentscheidung für oder gegen eine bilaterale prophylaktische Mastektomie stets fallbezogen eine umfassende Aufklärung und ausführliche multidisziplinäre Beratung über potentielle Vor- und Nachteile eines solchen Eingriffs mit Berücksichtigung der möglichen Alternativen voraus.

(3.19.)

- Frauen mit einer pathogenen BRCA1 oder BRCA2 Mutation haben ein lebenszeitlich erhöhtes Risiko für ein Ovarialkarzinom, Tubenkarzinom und/oder ein primäres Peritonealkarzinom.
- Bei gesunden Frauen mit einer pathogenen BRCA1- oder BRCA2-Genmutation führt die prophylaktische Adnexektomie zu einer Reduktion der Ovarialkarzinominzidenz und der Gesamtmortalität.

Daher soll die prophylaktische beidseitige Salpingo-Oophorektomie fallbezogen im Rahmen einer umfassenden, multidisziplinären Beratung über potentielle Vor- und Nachteile eines solchen Eingriffs und unter Berücksichtigung fehlender effektiver Früherkennungsmöglichkeiten diskutiert und empfohlen werden.

(3.20.)

- Bereits an Brustkrebs erkrankte Frauen mit einer pathogenen BRCA1 oder BRCA2 Genmutation haben ein erhöhtes Risiko für die Entstehung eines kontralateralen Mammakarzinoms. Dieses Risiko hängt u. a. ab vom betroffenen Gen und dem...
Version 2012

Ersterkrankungsalter und ist bei der Beratung zu berücksichtigen.

• Bei Frauen mit einer pathogenen BRCA1- oder BRCA2-Genmutation führt die kontralaterale, sekundär prophylaktische Mastektomie zu einer Reduktion des kontralateralen Karzinomrisikos. Bei der Indikationsstellung zur kontralateralen sekundär prophylaktischen Mastektomie soll die Prognose des Erstkarzinoms berücksichtigt werden.

Bei Patientinnen mit einer pathogenen BRCA1- oder BRCA2-Genmutation führt die prophylaktische Adnexektomie zu einer Reduktion der Brustkrebs-spezifischen Mortalität und des Gesamtüberlebens.

(3.21.)

Version 2017

• Bei Verdacht auf familiäre Belastung
• Im Kontext der Gentestung
• Vor prophylaktischen Maßnahmen

Der Kontakt zur Krebsselbsthilfe sollte gesunden sowie erkrankten Frauen und Männern mit erhöhten Risiken angeboten werden, um ihrem Wunsch nach weiteren Informationen nachzukommen und sie in ihrem Recht auf Selbstbestimmung zu bestärken.

Sie sollen unterstützt werden:

Zu 4. Lokoregional begrenzte Primärerkrankung

Zu 4.2 Prätherapeutische Diagnostik bei Patientinnen mit auffälligen bzw. suspekten Befunden der Mamma

Als notwendige Basisuntersuchungen gelten:

• Klinische Brustuntersuchung: Inspektion, Palpation von Brust und Lymphabflussgebieten
• Mammographie
• Ultraschall

Ergibt die klinische Brustuntersuchung einen auffälligen Befund, soll die Diagnostik durch bildgebende Verfahren und ggf. eine

Als Basisuntersuchungen gelten:

• Anamnese und klinische Brustuntersuchung: Inspektion, Palpation von Brust und Lymphabflussgebieten
• Mammographie
• Ultraschall

Ergibt die klinische Brustuntersuchung einen auffälligen Befund, soll die Diagnostik durch
<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>histologische Untersuchung komplettiert werden.</td>
<td>geeignete bildgebende Verfahren und ggf. eine histologische Untersuchung komplettiert werden.</td>
</tr>
<tr>
<td>(Stag-1a.)</td>
<td>(4.1 a.)</td>
</tr>
<tr>
<td>Bei symptomatischen Befunden soll bei Frauen unter 40 Jahren die Sonographie als bildgebende Methode der ersten Wahl durchgeführt werden.</td>
<td>Wie bei Stag-2a</td>
</tr>
<tr>
<td>(Stag-1b.)</td>
<td></td>
</tr>
<tr>
<td>Die Wirkungen endogener und exogener Hormone sollten bei Durchführung und Befundung diagnostischer Maßnahmen berücksichtigt werden.</td>
<td>Die Wirkungen endogener und exogener Hormone sollten bei Durchführung und Befundung diagnostischer Maßnahmen berücksichtigt werden.</td>
</tr>
<tr>
<td>(Stag-1c.)</td>
<td>(4.1 b.)</td>
</tr>
<tr>
<td>Bei klinisch auffälligem Befund bei Frauen ab 40 Lebensjahren soll die Mammographie als bildgebende Untersuchung durchgeführt werden.</td>
<td>a.) Frauen ab 40 Jahre sollen bei auffälligem Befund eine Mammographie erhalten.</td>
</tr>
<tr>
<td>(Stag-2a.)</td>
<td>b.)Bei Frauen unter 40 Jahren soll die Mammographie dort eingesetzt werden, wo ein Malignomverdacht anhand klinischer Untersuchung, Sonographie und - soweit indiziert - perkutaner Biopsie nicht mit ausreichender Sicherheit ausgeräumt werden kann.</td>
</tr>
<tr>
<td></td>
<td>c.) Zu einer mammographischen Abklärung sollen geeignete Zusatzaufnahmen erwogen werden.</td>
</tr>
<tr>
<td></td>
<td>d.) Bei aktuell nachgewiesenem Malignom soll prätherapeutisch eine Mammographie bds. durchgeführt werden.</td>
</tr>
<tr>
<td></td>
<td>(4.2. a-d.)</td>
</tr>
<tr>
<td></td>
<td>e.) Bei hoher mammographischer Dichte bzw. eingeschränkter mammographischer Beurteilbarkeit soll eine Sonographie ergänzend durchgeführt werden.</td>
</tr>
<tr>
<td></td>
<td>(4.2 e.)</td>
</tr>
<tr>
<td></td>
<td>a.) Die Sonographie soll zur Abklärung klinisch unklarer und mammographischer sowie MR-tomographischer Befunde der Beurteilungskategorien 0, III, IV und V eingesetzt werden.</td>
</tr>
<tr>
<td></td>
<td>(4.3 a.)</td>
</tr>
<tr>
<td></td>
<td>b.) Das Ziel einer standardisiert durchgeführten Mammasonographie ist die systematische und reproduzierbare Durchuntersuchung der</td>
</tr>
</tbody>
</table>
Änderungen im Rahmen der Aktualisierung 2017

<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bei hoher mammographischer Dichte (ACR III und IV) ist die Sensitivität der Mammographie eingeschränkt, sodass eine ergänzende Sonographie durchgeführt werden soll. (Stag-2b.)</td>
<td>GESTRICHTEN</td>
</tr>
<tr>
<td>Die Sonographie ist eine Zusatzuntersuchung für die Abklärung unklarer Befunde (klinisch/mammographisch). (Stag-3a.)</td>
<td>GESTRICHTEN</td>
</tr>
<tr>
<td>Die Sonographie soll insbesondere zur Abklärung klinisch nicht tastbarer, mammographischer Befunde BI-RADS 0, III, IV und V eingesetzt werden. (Stag-3b.)</td>
<td>GESTRICHTEN</td>
</tr>
<tr>
<td>Das Ziel einer standardisiert durchgeführten Mammasonographie ist die systematische und reproduzierbare Durchuntersuchung beider Mammae und der Axillae. Die Befunde sind reproduzierbar zu dokumentieren. (Stag-3c.)</td>
<td>GESTRICHTEN</td>
</tr>
<tr>
<td>Struktur-, Prozess- und Ergebnisqualität sollte auch für die Anwendung der Mammasonographie als Voraussetzung nachgewiesen werden. (Stag-3d.)</td>
<td>Struktur-, Prozess- und Ergebnisqualität sollten auch für die Anwendung der Mammasonographie als Grundvoraussetzung nachgewiesen werden. (4.3 c.)</td>
</tr>
<tr>
<td>Routinemäßig soll eine Kontrast-MRT der Mamma zur prätherapeutischen Diagnostik nicht durchgeführt werden. (Stag-4a.)</td>
<td>GESTRICHTEN</td>
</tr>
<tr>
<td>Eine KM-MRT sollte nur dann erfolgen, wenn die Möglichkeit einer MRT-gestützten Intervention vorhanden ist. (Stag-4b.)</td>
<td>GESTRICHTEN</td>
</tr>
<tr>
<td>Die histologische Diagnostik abklärungsbedürftiger Befunde soll durch</td>
<td>Die histologische Abklärung von Befunden soll durch Stanzbiopsie, Vakuumbiopsie und in zu</td>
</tr>
<tr>
<td>Version 2012</td>
<td>Version 2017</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Stanzbiopsie, Vakuumbiopsie oder offene Exzisionsbiopsie erfolgen. Die Stanzbiopsie und die Vakuumbiopsie können mammographisch und ultraschallgesteuert erfolgen. Alle Interventionen sollen unter Berücksichtigung aktueller Qualitätsempfehlungen durchgeführt werden. (Stag 5a.)</td>
<td>begründenden Ausnahmefällen durch offene Exzisionsbiopsie erfolgen. (4.5 a.)</td>
</tr>
<tr>
<td>Die Feinnadelaspiration soll nicht als Standardmethode zur Diagnosesicherung solider Tumoren an der Mamma eingesetzt werden. (Stag 5b.)</td>
<td>GESTRICHTEN</td>
</tr>
<tr>
<td>Die interventionell gesteuerte Gewebeentnahme zur histopathologischen Diagnosesicherung und Therapieplanung soll bei BIRADS 4/5-Befunden durch die bildgebende Methode erfolgen, in der der Befund am besten darstellbar und der Eingriff am wenigstens invasiv ist. (Stag 5c.)</td>
<td>GESTRICHTEN</td>
</tr>
<tr>
<td>Bei Vorliegen von Mikrokalk ohne begleitenden Herdbefund soll die stereotaktisch gesteuerte Vakuumbiopsie eingesetzt werden. (Stag 5d.)</td>
<td>Bei Vorliegen von Mikrokalk ohne begleitenden Herdbefund soll die stereotaktisch gesteuerte Vakuumbiopsie eingesetzt werden. (4.5 d.)</td>
</tr>
<tr>
<td>Bei MRT-gesteuerter Gewebegewinnung soll die Vakuumbiopsie eingesetzt werden. (Stag 5e.)</td>
<td>Zur mammographischen oder MRT-gesteuerten Gewebegewinnung sollte die Vakuumbiopsie eingesetzt werden. (4.5 e.)</td>
</tr>
<tr>
<td>Nach minimalinvasiver bildgebungsgesteuerter Gewebeentnahme soll die Ergebniskontrolle durch Korrelation der Ergebnisse der bildgebenden Diagnostik mit dem histopathologischen Befund erfolgen. (Stag 5f.)</td>
<td>Bei allen Biopsien ist die Korrelation zwischen dem histologischen Ergebnis und der klinischen Verdachtsdiagnose zu überprüfen und zu dokumentieren. (4.5 f.)</td>
</tr>
<tr>
<td>Bei histopathologisch benignem Befund nach BIRADS 4 oder 5 sollte einmalig eine bildgebende Kontrolle mit der entsprechenden Untersuchungsmethode nach</td>
<td>Bei histopathologisch benignem Befund der bildgebenden Kategorie 4 oder 5, die repräsentativ biopsiert wurden, sollte einmalig eine bildgebende</td>
</tr>
</tbody>
</table>
Version 2012

<table>
<thead>
<tr>
<th>Änderungen im Rahmen der Aktualisierung 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 12 Monaten erfolgen. Die Qualitätsanforderungen der S3-Leitlinie Brustkrebs-Frühserkennung sind einzuhalten. (Stag-5g.)</td>
</tr>
<tr>
<td>Version 2017</td>
</tr>
<tr>
<td>Kontrolle mit der entsprechenden Untersuchungsmethode nach 6 Monaten erfolgen. (4.5 g.)</td>
</tr>
</tbody>
</table>

Bei primär klinischem bzw. bildgebendem Verdacht auf befallene Lymphknoten in der Axilla kann zur Vermeidung überflüssiger axillärer Operationen eine bildgebungsgesteuerte minimalinvasive Biopsie zur feingeweblichen Diagnostik erfolgen. (Stag-5h.)

 Gestrichen

Die primäre, offene diagnostische Exzisionsbiopsie sollte nur in Ausnahmefällen durchgeführt werden, wenn eine bildgesteuerte Intervention nicht möglich oder risikoreich ist. (Stag-6a.)

Die präoperative Markierung soll bei nicht tastbaren Veränderungen grundsätzlich erfolgen. Der Nachweis einer adäquaten Resektion ist durch intraoperative Bildgebung zu erbringen. (Stag-6b.)

Die prä- oder intraoperative Markierung soll insbesondere bei nicht tastbaren Veränderungen mit der Methode erfolgen, mit der der Befund eindeutig darstellbar ist. Der Nachweis einer adäquaten Resektion ist intraoperativ durch Präparat radiographie oder Präparatesonographie zu erbringen. Sollte eine MR-gesteuerte Markierung durchgeführt worden sein, so soll im Fall eines histologisch unspezifischen benignen Befundes eine MR-Kontrolle innerhalb von 6 Monaten durchgeführt werden. (4.6 b.)

Bei der präoperativen Drahtmarkierung nicht tastbarer Befunde soll der Draht den Herd penetrieren und den Herd um weniger als 1 cm überragen. Wenn der Draht den Herd nicht penetriert, soll die Entfernung zwischen Draht und Herdrand ≤ 1 cm sein. Bei nicht raumfordernden Prozessen kann eine Markierung des operationsrelevanten Zielvolumens sinnvoll sein. (Stag-6c.)

Bei der präoperativen Drahtmarkierung nicht tastbarer Befunde soll der Draht den Herd und diesen weniger als 1 cm überragen. Wenn der Draht den Herd nicht penetriert, soll die Entfernung zwischen Draht und Herdrand ≤ 1 cm sein. Bei ausgedehnten Befunden kann eine Markierung des operationsrelevanten Zielvolumens durch mehrere Markierungen sinnvoll sein. (4.6 c.)

Das Operationsmaterial soll topographisch eindeutig markiert und ohne Inzision am

Das Operationsmaterial soll topographisch eindeutig markiert und ohne Inzision am
Version 2012

<table>
<thead>
<tr>
<th>Gewonnenen Gewebsmaterial an den Pathologen gesandt werden. (Stag-6d.)</th>
</tr>
</thead>
</table>
| Die intraoperative Dignitätsfestlegung durch Schnellschnitt soll nur ausnahmsweise erfolgen. Voraussetzungen für einen Schnellschnitt an Operationspräparaten der Mamma sind:
- die Läsion ist intraoperativ und im Präparat palpabel
- die Läsion ist groß genug (im Allgemeinen > 10 mm). (Stag-6e.) |
| Bei lokal fortgeschrittenen Karzinomen oder bei klinischem Verdacht auf Metastasierung soll bereits prätherapeutisch ein Staging mit folgenden Einzeluntersuchungen erfolgen:
- Röntgen-Thorax-Untersuchung
- Lebersonographie
- Skelettszintigraphie. (Stag-7) |

Version 2017

<table>
<thead>
<tr>
<th>Gewonnenen Gewebsmaterial an den Pathologen gesandt werden. (4.6 d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GESTRIECHEN</td>
</tr>
<tr>
<td>GESTRIECHEN</td>
</tr>
</tbody>
</table>

| Bei neu diagnostiziertem Mammakarzinom ab dem UICC Stadium II mit erhöhtem Risiko sowie III und IV ohne Symptomatik für eine Metastasierung, sollte ein Staging (Lunge, Leber, Skelett) durchgeführt werden.
- Bei neu diagnostiziertem Mammakarzinom und dem klinischen Verdacht auf Metastasen soll ein bildgebendes Staging erfolgen. (4.7 a.) |

<p>| Das Ganzkörperstaging sollte nur durchgeführt werden bei Frauen mit höherem Metastasierungsrisiko (N+, > T2) und/oder aggressiver Tumorbioiogie (z.B.: Her2+, triple-negativ), klinischen Zeichen, Symptomen und bei geplanter Entscheidung zur systemischen Chemotherapie. Das Ganzkörperstaging sollte mittels CT-Thorax/Abdomen und Skelettszintigraphie erfolgen. (4.7 b.) |</p>
<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>Die Steuerung der Biopsie soll mit Hilfe der Bildgebung erfolgen, die den Befund eindeutig darstellt. Bei der Wahl der Entnahmemethode sollen die diagnostische Sicherheit und das Nebenwirkungsrisiko berücksichtigt werden. Der Untersucher soll durch geeignete Maßnahmen sicherstellen, dass die Lokalisation des Befundes wieder zu finden ist (z.B. durch Clipinlage). (4.5 b.)</td>
</tr>
<tr>
<td>--</td>
<td>Auch bei primär durch Mammographie oder MRT detektierten Befunden soll bei sicherem sonographischem Korrelat die sonographisch gesteuerte Stanzbiopsie durchgeführt werden. (4.5 c.)</td>
</tr>
<tr>
<td>--</td>
<td>Zur feingeweblichen Abklärung bildgebend suspekter Lymphknoten sollte primär die Stanzbiopsie eingesetzt werden. (4.5 h.)</td>
</tr>
<tr>
<td>--</td>
<td>Bei Vakuumbiopsien sollten ≥ 12 Proben bei Verwendung einer 10-G-Nadel gewonnen werden. Bei anderen Kalibern (zwischen 8-G und 11-G) sollte die Anzahl der Probenentnahmen ein äquivalentes Probenvolumen erbringen. (4.5 j.)</td>
</tr>
</tbody>
</table>

Zu 4.3 Präinvasive Neoplasien

Das therapeutische Konzept bei präinvasiven Neoplasien soll nach Vorliegen des histologischen Befundes aus einer Stanz-/Vakuumbiopsie interdisziplinär (Radiodiagnostik, Operateur, Pathologie) erstellt werden.

(Präinv-1)

Bei der Behandlung einer Patientin mit duktalem Carcinoma in situ (DCIS) ohne invasive Anteile sollen die Vor- und Nachteile verfügbarer Therapieformen bzw. deren Kombination erläutert werden. Dabei soll der relative und absolute Vorteil in Bezug auf die lokale Rezidivwahrscheinlichkeit und der

Bei der Behandlung einer Patientin mit duktalem Carcinoma in situ (DCIS) ohne invasive Anteile sollen die Vor- und Nachteile verfügbarer Therapieformen bzw. deren Kombination erläutert werden. Dabei soll der relative und absolute Effekt adjuvanter Therapiemaßnahmen in Bezug auf die

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019
Version 2012

<table>
<thead>
<tr>
<th>Änderungen im Rahmen der Aktualisierung 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>fehlende Einfluss auf das Gesamtüberleben dargestellt werden. (Präinv-2)</td>
</tr>
<tr>
<td>Der Resektionsrand ist ein wichtiger prognostischer Faktor beim DCIS. Der tumorfreie Abstand zum Schnittrand soll mindestens 2 mm betragen, wenn eine postoperative Bestrahlungsbehandlung erfolgt. (Präinv-3a.)</td>
</tr>
<tr>
<td>Eine postoperative Bestrahlungsbehandlung nach brusterhaltender Operation wegen eines DCIS senkt die Rate an invasiven und nichtinvasiven Lokalrezidiven, ohne dass ein Einfluss auf das Gesamtüberleben nachgewiesen werden kann. (Präinv-4a.)</td>
</tr>
<tr>
<td>Die absolute Risikoreduktion der Lokalrezidivrate durch eine Strahlentherapie bei brusterhaltender Operation von DCIS hängt von individuellen Faktoren ab. (Präinv-4b.)</td>
</tr>
<tr>
<td>Tamoxifen kann das ipsi- und kontralaterale Rezidivrisiko für ein DCIS senken. Ein Effekt auf das Überleben besteht nicht. Der adjuvante Einsatz von Tamoxifen soll nach Abwägen von Benefit und Nebenwirkungen individuell entschieden werden. (Präinv-5)</td>
</tr>
</tbody>
</table>

Version 2017

<table>
<thead>
<tr>
<th>Änderungen im Rahmen der Aktualisierung 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>lokale Rezidivwahrscheinlichkeit und das Gesamtüberleben dargestellt werden. (4.8.)</td>
</tr>
<tr>
<td>Die vollständige Exzision ist die therapeutische Basis für die Behandlung des DCIS. Die Resektionsgrenzen sollten beim reinen DCIS mindestens 2 mm betragen, wenn eine adjuvante Radiotherapie angeschlossen wird. (4.9.)</td>
</tr>
<tr>
<td>Die adjuvante Radiotherapie verringert das Lokalrezidivrisiko nach brusterhaltender Therapie um bis zu 50%, bei niedrigem Risiko ist der Benefit für die Patientin jedoch gering. Die Möglichkeit einer Radiotherapie sollte der Patientin in Abhängigkeit vom individuellen Risikoprofil angeboten werden. (4.11.)</td>
</tr>
<tr>
<td>GESTRICHEN</td>
</tr>
<tr>
<td>GESTRICHEN</td>
</tr>
<tr>
<td>GESTRICHEN</td>
</tr>
<tr>
<td>Das therapeutische Konzept bei Risikoläsionen soll nach Vorliegen des histologischen Befundes aus einer Stanz-/Vakuumbiopsie interdisziplinär (Radiodiagnostik, Operateur, Pathologie) erstellt werden. (4.12.)</td>
</tr>
<tr>
<td>Bei Diagnose einer ADH soll eine offene PE zum Ausschluss einer höhergradigen Läsion durchgeführt werden. (4.13.)</td>
</tr>
</tbody>
</table>
Version 2012 vs. Version 2017

<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>Bei Diagnose einer FEA kann auf eine offene PE verzichtet werden, wenn die suspekten Verkalkungen mittels Vakuumbiopsie bildgebend bereits vollständig oder weitestgehend vollständig entfernt wurde. Bei radiologisch ausgedehnten begleitenden Verkalkungen oder bei Diskordanz zum radiologischen Befund soll eine repräsentative offene PE erfolgen. (4.15.)</td>
</tr>
<tr>
<td>--</td>
<td>Bei histologischer Diagnose eines mittels Bildgebung entdeckten Milchgangspapilloms oder eines Papilloms mit ADH soll eine Exzision durchgeführt werden, diese kann auch als nicht-invasive Exzision erfolgen sofern keine Atypien vorliegen. (4.17.)</td>
</tr>
</tbody>
</table>
Version 2012

Zu 4.4 Operative Therapie des invasiven Karzinoms

<table>
<thead>
<tr>
<th>Basis der Therapie für alle nicht fortgeschrittenen Mammakarzinome ist die Tumorresektion in sano (R0-Status).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Operativ-1a.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Der Resektionsrandstatus hat einen prognostischen Effekt beim invasiven Mammakarzinom. Es besteht ein signifikanter Zusammenhang zwischen dem Resektionsrandstatus (positiv vs. knapp vs. negativ) und der Lokalrezidivrate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Operativ-1b.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aus diesem Grunde soll beim invasiven Mammakarzinom der minimale Sicherheitsabstand zwischen Tumor (invasives Karzinom und begleitendes DCIS) und Schnittrand mindestens 1 mm betragen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Operativ-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deshalb sollen alle Patientinnen über die Möglichkeit der brusterhaltenden Therapie (BET) und der modifiziert radikalen Mastektomie (MMR) mit der Möglichkeit einer primären oder sekundären Rekonstruktion aufgeklärt werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Operativ-3b.)</td>
</tr>
</tbody>
</table>

Version 2017

(4.18.)

<table>
<thead>
<tr>
<th>Basis der Therapie für alle nicht fortgeschrittenen Mammakarzinome ist die Tumorresektion in sano (R0-Status).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4.19 a.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Der Resektionsrandstatus hat einen prognostischen Effekt beim invasiven Mammakarzinom. Es besteht ein signifikanter Zusammenhang zwischen dem Resektionsrandstatus (positiv vs. negativ) und der Lokalrezidivrate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4.19 b.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GESTRICHEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4.20 b.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eine modifiziert radikale Mastektomie soll bei folgenden Indikationen durchgeführt werden:</th>
</tr>
</thead>
<tbody>
<tr>
<td>· diffuse, ausgedehnte Kalzifikation vom malignen Typ</td>
</tr>
<tr>
<td>· Multizentrität</td>
</tr>
<tr>
<td>· inkomplette Entfernung des Tumors (inkl. intraduktale Komponente), auch nach Nachresektion</td>
</tr>
<tr>
<td>· inflammatorisches Mammakarzinom (auch nach erfolgreicher neoadjuvanter Therapie)</td>
</tr>
<tr>
<td>· voraussichtlich nicht zufriedenstellendes kosmetisches Ergebnis bei brusterhaltender Therapie</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Eine Mastektomie soll bei folgenden Indikationen durchgeführt werden:</td>
</tr>
<tr>
<td>· inkomplette Entfernung des Tumors (inkl. intraduktale Komponente), auch nach Nachresektion</td>
</tr>
<tr>
<td>· inflammatorisches Mammakarzinom (in der Regel auch bei pathologischer Komplettremission)</td>
</tr>
<tr>
<td>· bei Kontraindikationen zur Nachbestrahlung nach brusterhaltender Therapie bei absoluter Indikation zur Bestrahlung</td>
</tr>
<tr>
<td>Wunsch der aufgeklärten Patientin</td>
</tr>
<tr>
<td>(4.21 a.)</td>
</tr>
<tr>
<td>Version 2012</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>• Kontraindikationen zur Nachbestrahlung nach brusterhaltender Therapie</td>
</tr>
<tr>
<td>• Wunsch der aufgeklärten Patientin (Operativ-4)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Die SLNB ist bei SLN-negativen Patientinnen hinsichtlich der lokalen Kontrolle gleichwertig mit der Axilladissektion. (Operativ-6b.)</td>
</tr>
<tr>
<td>Die Morbidität nach SLNB ist im Vergleich zur Axilladissektion signifikant reduziert. (Operativ-6c.)</td>
</tr>
<tr>
<td>Bei Patientinnen, bei denen kein SLN detektiert wird, soll eine Axilladissektion durchgeführt werden. (Operativ-6d.)</td>
</tr>
<tr>
<td>Bei Patientinnen, die einen positiven SLN (Makrometastase) aufweisen, ist in der Regel</td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019
Version 2012

Eine axilläre Dissektion mit Entfernung von mindestens 10 Lymphknoten aus den Levels I und II indiziert.

(Operativ-6e.)

Version 2017

Für Patientinnen mit pT1–pT2/cN0-Tumoren, die eine brusterhaltende Operation mit anschließender perkutaner Bestrahlung über tangentielle Gegenfelder (Tangentialbestrahlung) erhalten und einen oder zwei positive Sentinel-Lymphknoten aufweisen, besteht die Option, auf eine Axilladissektion zu verzichten.

(Operativ-6f.)

Bei Patientinnen mit pT1–pT2/cN0-Tumoren, die eine brusterhaltende Operation mit anschließender perkutaner Bestrahlung über tangentielle Gegenfelder (Tangentialbestrahlung) erhalten und einen oder zwei positive Sentinel-Lymphknoten aufweisen, sollte auf eine Axilladissektion verzichtet werden.

(4.23 d.)

Patientinnen, die eine Mastektomie erhalten oder bei denen die unter d. genannten Kriterien nicht zutreffen, sollten eine axilläre Dissektion oder eine Radiotherapie der Axilla erhalten.

(4.23 e.)

Dieses Vorgehen setzt eine umfassende Patienteninformation und -aufklärung voraus. Die Prozess- und Ergebnisqualität sollen im Rahmen qualitätssichernder Maßnahmen prospektiv evaluiert werden.

(Operativ-6g.)

GESTRICHEN

Bei ausschließlicher Mikrometastasierung kann auf eine Axilladissektion verzichtet werden.

(Operativ-6h.)

Bei ausschließlicher Mikrometastasierung soll auf eine gezielte Therapie der Lymphabflussgebiete (Operation, Radiotherapie) verzichtet werden.

(4.23 f.)

Bei Patientinnen, die eine primär systemische Therapie (PST) erhalten, und prätherapeutisch einen palpatorisch und sonographisch negativen Lymphknotenstatus aufweisen, sollte der SLN nach der PST durchgeführt werden.

(4.23 g.)

Bei Patientinnen, die eine primär systemische Therapie (PST) erhalten und prätherapeutisch einen stanzbioptisch positiven (pN1) und nach der PST
13.1. Änderungen im Rahmen der Aktualisierung 2017

<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>einem klinisch negativen Nodalstatus aufweisen (ycN0), sollte eine Axilladissektion erfolgen.</td>
<td>(4.23 h.)</td>
</tr>
<tr>
<td>--</td>
<td>Bei Patientinnen, die eine primär systemische Therapie (PST) erhalten und vor und nach der PST einen positiven Nodalstatus aufweisen, soll eine Axilladissektion durchgeführt werden.</td>
</tr>
<tr>
<td>(4.23 i.)</td>
<td>(4.23 j.)</td>
</tr>
<tr>
<td>Wenn die Entfernung des Sentinellymphknotens durchgeführt wird, sollen die Qualitätskriterien der Fachgesellschaften eingehalten werden. (Operativ-7)</td>
<td>GESTRICHTEN</td>
</tr>
<tr>
<td>Zu 4.5 Pathomorphologische Untersuchung</td>
<td></td>
</tr>
<tr>
<td>Bei der Bestimmung des Hormonrezeptor- und HER2-Status soll die Zuverlässigkeit der eingesetzten Nachweisverfahren sichergestellt sein. Dies beinhaltet die interne Testvalidierung, die Verwendung standardisierter Protokolle und interner Kontrollen sowie die regelmäßige erfolgreiche Teilnahme an externen Qualitätssicherungsmaßnahmen. (Patho-4d.)</td>
<td>Bei der Bestimmung des Hormonrezeptor- und HER2-Status sowie des Ki-67- Proliferationsindex soll die Zuverlässigkeit der eingesetzten Nachweisverfahren sichergestellt sein. Dies beinhaltet die interne Testvalidierung, die Verwendung standardisierter Protokolle, on slide- und interner Kontrollen sowie die regelmäßige erfolgreiche Teilnahme an externen Qualitätssicherungsmaßnahmen. (4.28 e.)</td>
</tr>
<tr>
<td>Zur Einschätzung des Erkrankungsverlaufs (Prognose) und der voraussichtlichen Wirkung systemischer Therapien (Prädiktion) sollen die Eigenschaften des Tumors und die Situation der Patientin dokumentiert werden.</td>
<td></td>
</tr>
<tr>
<td>Als Prognosefaktoren sollen erhoben werden: (Patho-5.1)</td>
<td></td>
</tr>
</tbody>
</table>
Änderungen im Rahmen der Aktualisierung 2017

<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pTNM-Status (Tumorgröße, axillärer Lymphknotenbefall, Fernmetastasierung)</td>
<td>(Patho-5.1a.)</td>
</tr>
<tr>
<td>-Resektionsrand (R-Klassifikation) und Sicherheitsabstände</td>
<td>(Patho-5.1b.)</td>
</tr>
<tr>
<td>-histologischer Typ</td>
<td>(Patho-5.1c.)</td>
</tr>
<tr>
<td>-Grading.</td>
<td>(Patho-5.1d.)</td>
</tr>
<tr>
<td>Als Prognosefaktoren sollten erhoben werden:</td>
<td></td>
</tr>
<tr>
<td>-Lymphgefäße- und Blutgefäßeinbruch (Lx, Vx)</td>
<td>(Patho-5.1e.)</td>
</tr>
<tr>
<td>-Alter</td>
<td>(Patho-5.1f.)</td>
</tr>
<tr>
<td>Beim nodal-negativen Mammakarzinom kann die Bestimmung der Tumorkonzentrationen von uPA und PAI-1 mittels ELISA weitere prognostische Informationen liefern.</td>
<td>(Patho-5.1g.)</td>
</tr>
<tr>
<td>Für die adjuvante Therapie sollen folgende prädiktive Faktoren erhoben werden:</td>
<td></td>
</tr>
<tr>
<td>-Östrogen-/Progesteronrezeptorstatus für eine endokrine Systemtherapie</td>
<td>(Patho-5.1h.)</td>
</tr>
<tr>
<td>-HER2/neu-Status für eine zielgerichtete Anti-HER2-Therapie</td>
<td>(Patho-5.1i.)</td>
</tr>
<tr>
<td>-Menopausenstatus für den Einsatz einer antiöstrogenen Therapie.</td>
<td>(Patho-5.1j.)</td>
</tr>
</tbody>
</table>
Version 2012

Der prognostische und prädiktive Wert des Proliferationsmarkers Ki-67 ist nicht ausreichend belegt. Außerhalb von Studien soll er daher nicht zur Subtypisierung ER-positiver Mammakarzinome (z. B. Ki-67 < 14 %: Luminal A; Ki 67 ≥ 14 %: Luminal B) als Entscheidungsgrundlage für die systemische Therapie klinisch angewendet werden. (Patho-5.1k.)

Der Einsatz von Analysen der Genexpression – PCR-basiert oder mittels Microarrays – zur Beurteilung der Prognose oder des Therapieansprechens (Prädiktion) ist für den Routineeinsatz nicht ausreichend validiert und kann daher nicht empfohlen werden. (Patho-5.11.)

Version 2017

Zusätzlich kann die Proliferationsrate durch immunhistochemischen Nachweis von Ki-67 bestimmt werden. (4.28 b.)

histologischer Typ (gemäß aktueller WHO-Klassifikation) (4.29 c.)

d.) histologisches Grading gemäß Elston und Ellis [432] (4.29 d.)

e.) peritumorale Lymphgefäßinvasion (gemäß aktueller TNM-Klassifikation, derzeit 8. Auflage [422]) (4.29 e.)

Die intraoperative Dignitätsfestlegung durch Schnellschnitt soll nur ausnahmsweise erfolgen. Voraussetzungen für einen Schnellschnitt an Operationspräparaten der Mamma sind:

- die Läsion ist intraoperativ und im Präparat palpabel
- die Läsion ist groß genug (im Allgemeinen > 10 mm) (Patho-6)

Die intraoperative Schnellschnittuntersuchung soll nur bei unmittelbarer operativer Konsequenz erfolgen. Anwendungsgebiete sind:

Dignitätsbeurteilung palpabler Herdbefunde >10 mm, wenn eine präoperative Diagnose mittels minimal-invasiver Biopsie nicht möglich war. Bestimmung des Resektionsrandstatus Beurteilung der Sentinelymphknoten

Eine Schnellschnittuntersuchung sollte nicht erfolgen bei nicht-palpablen Läsionen und...
<table>
<thead>
<tr>
<th>Version 2012</th>
<th>Version 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der Lymphknotenstatus wird anhand der histologischen Untersuchung aller entfernten Lymphknoten erhoben.</td>
<td>pTNM-Status (lokoregionäre Tumorausbreitung, lokoregionärer Lymphknotenbefall, Fernmetastasierung) gemäß der aktuellen TNM-Klassifikation [derzeit 8. Auflage [422]]</td>
</tr>
<tr>
<td>--</td>
<td>Resekionsrandstatus (R-Klassifikation, gemäß aktueller TNM-Klassifikation, derzeit 8. Auflage [422]) und Sicherheitsabstände (4.29 b.)</td>
</tr>
<tr>
<td>--</td>
<td>Die Hinzunahme von Ki67 zu den konventionellen Prognosefaktoren (Alter, pT, pN, Grad, ER, PR, HER2) verbessert die Prognoseabschätzung bei Frauen mit histologisch gesichertem ER-/PR-positivem und HER2-negativem invasivem Mammakarzinom für die Entscheidung, ob eine adjuvante Chemotherapie durchgeführt werden soll. (4.30 a.)</td>
</tr>
<tr>
<td>--</td>
<td>Ki-67 ist ein kontinuierlicher Marker der Proliferationsaktivität. Bei einer Ki-67-Positivität >/= 25% kann von einem erhöhten Risiko ausgegangen werden. (4.30 b.)</td>
</tr>
<tr>
<td>--</td>
<td>Die Reproduzierbarkeit der Ki-67-Bestimmung lässt sich durch Anwendung einheitlicher Kriterien signifikant verbessern. Die Bestimmung sollte daher standardisiert erfolgen. (4.30 c.)</td>
</tr>
<tr>
<td>--</td>
<td>Nur wenn bei Frauen mit einem ER/PR-positiven, HER2-negativen, nodal-negativen invasiven Mammakarzinom die konventionellen Prognoseparameter einschließlich Ki-67 keine eindeutige Entscheidung für oder gegen eine</td>
</tr>
<tr>
<td>Version 2012</td>
<td>Version 2017</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>adjuvante Chemotherapie erlauben, kann ein methodisch standardisierter und klinisch validierter Multigentest bei der Entscheidung herangezogen werden.</td>
<td>Wenn ein Multigentest durchgeführt wird, soll nicht mehr als ein Test zur Entscheidungsfindung herangezogen werden.</td>
</tr>
<tr>
<td>Hinsichtlich des Nutzens der Multigentests besteht jedoch weiterer Forschungsbedarf, da die Studienlage und die Nachbeobachtungszeiten in den vorliegenden Studien noch nicht ausreichend sind.</td>
<td>(4.31 a.)</td>
</tr>
<tr>
<td>(4.31 b.)</td>
<td>**</td>
</tr>
</tbody>
</table>
13.2. Verwendete Suchfilter anderer Anbieter

13.2.1. Scottish Intercollegiate Guidelines Network (SIGN)

SIGN Suchfilter Systematic Reviews

<table>
<thead>
<tr>
<th>Verarbeitungsschritt</th>
<th>Suchstrategie für MEDLINE (via Ovid)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Meta-Analysis as Topic/</td>
</tr>
<tr>
<td></td>
<td>2. meta analy$.tw.</td>
</tr>
<tr>
<td></td>
<td>3. metaanaly$.tw.</td>
</tr>
<tr>
<td></td>
<td>4. Meta-Analysis/</td>
</tr>
<tr>
<td></td>
<td>5. (systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td></td>
<td>6. exp Review Literature as Topic/</td>
</tr>
<tr>
<td></td>
<td>7. or/1-6</td>
</tr>
<tr>
<td></td>
<td>8. cochrane.ab.</td>
</tr>
<tr>
<td></td>
<td>9. embase.ab.</td>
</tr>
<tr>
<td></td>
<td>10. (psychlit or psyclit).ab.</td>
</tr>
<tr>
<td></td>
<td>11. (psychinfo or psycinfo).ab.</td>
</tr>
<tr>
<td></td>
<td>12. (cinahl or cinhal).ab.</td>
</tr>
<tr>
<td></td>
<td>13. science citation index.ab.</td>
</tr>
<tr>
<td></td>
<td>14. bids.ab.</td>
</tr>
<tr>
<td></td>
<td>15. cancerlit.ab.</td>
</tr>
<tr>
<td></td>
<td>16. or/8-15</td>
</tr>
<tr>
<td></td>
<td>17. reference list$.ab.</td>
</tr>
<tr>
<td></td>
<td>18. bibliograph$.ab.</td>
</tr>
<tr>
<td></td>
<td>19. hand-search$.ab.</td>
</tr>
<tr>
<td></td>
<td>20. relevant journals.ab.</td>
</tr>
<tr>
<td></td>
<td>21. manual search$.ab.</td>
</tr>
<tr>
<td></td>
<td>22. or/17-21</td>
</tr>
<tr>
<td></td>
<td>23. selection criteria.ab.</td>
</tr>
<tr>
<td></td>
<td>24. data extraction.ab.</td>
</tr>
<tr>
<td></td>
<td>25. 23 or 24</td>
</tr>
<tr>
<td></td>
<td>26. Review/</td>
</tr>
<tr>
<td></td>
<td>27. 25 and 26</td>
</tr>
<tr>
<td></td>
<td>28. Comment/</td>
</tr>
<tr>
<td></td>
<td>29. Letter/</td>
</tr>
<tr>
<td></td>
<td>30. Editorial/</td>
</tr>
<tr>
<td></td>
<td>31. animal/</td>
</tr>
<tr>
<td></td>
<td>32. human/</td>
</tr>
<tr>
<td></td>
<td>33. 31 not (31 and 32)</td>
</tr>
<tr>
<td></td>
<td>34. or/28-30,33</td>
</tr>
<tr>
<td></td>
<td>35. 7 or 16 or 22 or 27</td>
</tr>
<tr>
<td></td>
<td>36. 35 not 34</td>
</tr>
</tbody>
</table>
SIGN Randomised Controlles Trials

Verarbeitungsschritt

<table>
<thead>
<tr>
<th>Suchstrategie für MEDLINE (via Ovid)</th>
<th>1. Randomized Controlled Trials as Topic/</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. randomized controlled trial/</td>
<td></td>
</tr>
<tr>
<td>3. Random Allocation/</td>
<td></td>
</tr>
<tr>
<td>4. Double Blind Method/</td>
<td></td>
</tr>
<tr>
<td>5. Single Blind Method/</td>
<td></td>
</tr>
<tr>
<td>6. clinical trial/</td>
<td></td>
</tr>
<tr>
<td>7. clinical trial, phase i.pt.</td>
<td></td>
</tr>
<tr>
<td>8. clinical trial, phase ii.pt.</td>
<td></td>
</tr>
<tr>
<td>9. clinical trial, phase iii.pt.</td>
<td></td>
</tr>
<tr>
<td>10. clinical trial, phase iv.pt.</td>
<td></td>
</tr>
<tr>
<td>11. controlled clinical trial.pt.</td>
<td></td>
</tr>
<tr>
<td>12. randomized controlled trial.pt.</td>
<td></td>
</tr>
<tr>
<td>14. clinical trial.pt.</td>
<td></td>
</tr>
<tr>
<td>15. exp Clinical Trials as topic/</td>
<td></td>
</tr>
<tr>
<td>16. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15</td>
<td></td>
</tr>
<tr>
<td>17. (clinical adj trial$).tw.</td>
<td></td>
</tr>
<tr>
<td>18. ((singl$ or doubl$ or treb$ or tripl$) adj (blind$3 or mask$3)).tw.</td>
<td></td>
</tr>
<tr>
<td>19. PLACEBOS/</td>
<td></td>
</tr>
<tr>
<td>20. placebo$.tw.</td>
<td></td>
</tr>
<tr>
<td>21. randomly allocated.tw.</td>
<td></td>
</tr>
<tr>
<td>22. (allocated adj2 random$).tw.</td>
<td></td>
</tr>
<tr>
<td>23. 17 or 18 or 19 or 20 or 21 or 22</td>
<td></td>
</tr>
<tr>
<td>24. 16 or 23</td>
<td></td>
</tr>
<tr>
<td>25. case report.tw.</td>
<td></td>
</tr>
<tr>
<td>26. letter/</td>
<td></td>
</tr>
<tr>
<td>27. historical article/</td>
<td></td>
</tr>
<tr>
<td>28. 25 or 26 or 27</td>
<td></td>
</tr>
<tr>
<td>29. 24 not 28</td>
<td></td>
</tr>
</tbody>
</table>
SIGN Observational Studies

Verarbeitungsschritt

<table>
<thead>
<tr>
<th>Suchstrategie für MEDLINE (via Ovid)</th>
<th>1. Epidemiologic studies/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. exp case control studies/</td>
</tr>
<tr>
<td></td>
<td>3. exp cohort studies/</td>
</tr>
<tr>
<td></td>
<td>4. Case control.tw.</td>
</tr>
<tr>
<td></td>
<td>5. (cohort adj (study or studies)).tw.</td>
</tr>
<tr>
<td></td>
<td>6. Cohort analy$$.tw.</td>
</tr>
<tr>
<td></td>
<td>7. (Follow up adj (study or studies)).tw.</td>
</tr>
<tr>
<td></td>
<td>8. (observational adj (study or studies)).tw.</td>
</tr>
<tr>
<td></td>
<td>9. Longitudinal.tw.</td>
</tr>
<tr>
<td></td>
<td>10. Retrospective.tw.</td>
</tr>
<tr>
<td></td>
<td>12. Cross-sectional studies/</td>
</tr>
<tr>
<td></td>
<td>13. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12</td>
</tr>
</tbody>
</table>

13.2.2. University of Texas (UT Health)

UT Health Brustkrebsfilter

Verarbeitungsschritt

<table>
<thead>
<tr>
<th>Suchstrategie für MEDLINE (via Ovid)</th>
<th>1. breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td></td>
<td>3. Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td></td>
<td>4. 2 and 3</td>
</tr>
<tr>
<td></td>
<td>5. (brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumo?))).ti,ab,kw.</td>
</tr>
<tr>
<td></td>
<td>6. 1 or 4 or 5f</td>
</tr>
</tbody>
</table>
13.3. Schlüsselfragen (inkl. PICO-Schema)

Tabelle 15: Fragestellung Kapitel 3.3 Frauen mit erhöhtem Risiko für Brustkrebs zum Thema Genpanel - Früherkennung (Schlüsselfrage 3.3-1)

Klinische Frage: Gibt es ausreichende Daten für intensivierte Früherkennungsmaßnahmen bei Mutationsträgern/innen (unten aufgeführter Gene)?

Schlüssel Frage 3.3-1: Profitieren Personen mit Mutationen in unten aufgeführten Genen von intensiveren Früherkennungsmaßnahmen ((Mammographie, Palpation andere) im Vergleich zu Mutationsträgern/innen ohne diese Maßnahmen (außerhalb der Usual Practice) bezogen auf Inzidenz, Mortalität, QoL?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studien-design</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frauen und Männer mit einem oder mehreren unten aufgeführter Risikogenen: •BRCA1 •BRCA2 •ATM •CDH1 •CHEK2 •NBN •PALB2 (FANCN) •PTEN •RAD51C (FANCO), RAD51D •TP53 •MLH1 •MSH2 •MSH6 •PMS2 •Statistisch erhöhtes Risiko ohne Genbefund</td>
<td>Intensivierte Früherkennungsmaßnahmen (außerhalb der Usual Care/Practice)</td>
<td>Usual Care/Practice</td>
<td>Patientenrelevantes Outcome: Erniedrigte Mortalitätsraten, Erniedrigte Inzidenzraten, Besseres Tumorstadium, Quality of Life (QoL)</td>
<td>Systematische Übersichtsarbeiten, Randomized controlled Trial (RCT), Observational Studies</td>
<td>2007 - Aktuell</td>
</tr>
</tbody>
</table>
Tabelle 16: Fragestellung Kapitel 3.3 Frauen mit erhöhtem Risiko für Brustkrebs zum Thema Genpanel - Operative Maßnahmen (Schlüsselfrage 3.3-2)

Klinische Frage: Gibt es ausreichende Daten für prophylaktische Operationen bei Mutationsträgern/innen (unten aufgeführter Gene)?

Schlüsselfrage 3.3-2: Profitieren Personen mit Mutationen in unten aufgeführten Genen von operativen Maßnahmen (Bilaterale prophylaktische Salpingo-Oophorektomie sowie Mastektomie) im Vergleich zu Mutationsträgern/innen ohne diese Maßnahmen (außerhalb der Usual Practice) bezogen auf Inzidenz, Mortalität, QoL?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frauen und Männer mit einem oder mehreren unten aufgeführter Risikogenen: BRCA1, BRCA2, ATM, CDH1, CHEK2, NBN, PALB2 (FANCN), PTEN, RAD51C (FANCO), RAD51D, TP53, MLH1, MSH2, MSH6, PMS2</td>
<td>Operative Maßnahmen: Bilaterale prophylaktische Salpingo-Oophorektomie und/oder Mastektomie</td>
<td>Usual Care/Practice</td>
<td>Patientenrelevantes Outcome: Mortalitätsraten, Inzidenzraten, Tumorstadium, QoL</td>
<td>Systematische Übersichtsarbeiten, RCT, Observational Studies</td>
<td>2007 - Aktuell</td>
</tr>
</tbody>
</table>
Tabelle 17: Fragestellung Kapitel 4.2 Prätherapeutische Ausbreitungsdiagnostik bei Patientinnen mit auffälligen bzw. suspekten Befunden der Mamma zum Thema Biopsienadel (Schlüsselfrage 4.2-1)

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studien-design</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brustkrebspatienten (m/w) mit auffälligem, abzuklärendem Befund der Axilla (z.B. Imaging/Bildgebung, clinical exam/ klinische Untersuchung with suspected positive lymph node/mit V.a. befallenen Lymphknoten)</td>
<td>Stanzbiopsie (core needle biopsy)</td>
<td>Feinnadelbiopsie (Fine needle aspiration)</td>
<td>Sensitivität, Spezifität, PPV, NPV, TP/FN/TN/FN</td>
<td>Systematische Übersichtsarbeiten, RCTs, Observational Studies</td>
<td>2007 - Aktuell</td>
</tr>
</tbody>
</table>

Klinische Frage: Welchen Stellenwert hat die Wahl der Biopsienadel?

Schlüsselfrage 4.2-1: Ist bei Patienten (m/w) mit auffälligem, abzuklärendem Befund der Axilla die Tumorgewebsentnahme mittels der „Core needle biopsy“-Methode/Stanzbiopsie der Probenentnahme mittels Feinnadelbiopsie (Fine needle aspiration) bezogen auf Sensitivität/Spezifität/PPV/NPV/TP/FN/TN/FN überlegen?
Tabelle 18: Fragestellung Kapitel 4.5 Pathomorphologische Untersuchung zum Thema Multigentests (Schlüsselfrage 4.5-1)

Klinische Frage: Hat der Einsatz von Multigentests für die Chemotherapie-Entscheidung für nodal-positive Patienten einen Nutzen?

Schlüsselfrage 4.5-1: Lässt sich durch Multigentests (Oncotype, Prosigna, Endopredict, Mammaprint) bei nodal-positiven (1-3 Lymphknoten) ER-/PR-positiven und HER2-negativen Patientinnen, die ausschließlich mit endokriner Therapie behandelt werden, eine Gruppe, bei der auf eine adjuvante Chemotherapie verzichtet werden kann, besser abgrenzen als durch etablierte klinisch-pathologische Risikoeinteilungen?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
</table>
Tabelle 19: Fragestellung Kapitel 4.5 Pathomorphologische Untersuchung zum Thema Ki-67 (Schlüsselfrage 4.5-2)

Klinische Frage: Verbessert die Hinzunahme von Ki67 zu den konventionellen Prognosefaktoren (Alter, pT, pN, G, ER, PR, HER2) die Sicherheit der Prognoseabschätzung für die Entscheidung, ob eine adjuvante Chemotherapie bei Frauen mit histologisch gesichertem ER-/PR-positivem, HER2-negativem invasiven Mammakarzinom eingesetzt werden soll?

Schlüsselfrage 4.5-2: Lassen sich durch Hinzunahme von Ki67 bei Patientinnen mit einem ER-/PR-positiven, HER2-negativen Mammakarzinom prognostisch relevante Risikogruppen besser unterscheiden als durch etablierte klinisch-pathologische Risikoeinteilungen alleine, um mit höherer Sicherheit entscheiden zu können, ob einerseits auf eine adjuvante Chemotherapie verzichtet werden kann bzw. andererseits eine adjuvante Chemotherapie eingesetzt werden sollte?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
</table>
Tabelle 20: Fragestellung Kapitel 4.6 Adjuvante Strahlentherapie zum Thema Lymphabflussgebiete (Schlüsselfrage 4.6-1)

Klinische Frage: Welchen Stellenwert hat die Bestrahlung der Lymphabflussgebiete?

Schlüsselfrage 4.6-1: Profitieren Brustkrebspatienten (m/w) nach erfolgter Tumorresektion von einer Bestrahlung (zusätzlich zur Brust-Bestrahlung) der Lymphabflussgebiete bezüglich des Überlebens (rezidivfrei und overall) und der Lebensqualität im Vergleich zu Patienten, die die keine Bestrahlung der Lymphabflussgebiete erhalten?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten (m/w) nach Resektion des Tumors (lokal begrenztes Mammakarzinom?); (nach brusterhaltender OP?)</td>
<td>(zusätzlich zur Brust-Bestrahlung) Bestrahlung der Lymphabflussgebiete</td>
<td>Ganz-Brust-Bestrahlung</td>
<td>Rezidivfreies Überleben; Overall-Survival; Lokoregionäre Rückfallrate; Akute Toxizität; Späte Toxizität; Quality of Life</td>
<td>Systematische Übersichtsarbeiten</td>
<td>2011 - Aktuell</td>
</tr>
</tbody>
</table>
Tabelle 21: Fragestellung Kapitel 4.6 Adjuvante Strahlentherapie zum Thema Teilbrustbestrahlung (Schlüsselfrage 4.6-2)

Klinische Frage: Welchen Stellenwert hat die Teilbrustbestrahlung?

Schlüsselfrage 4.6-2: Profitieren Brustkrebspatienten (m/w) nach erfolgter Tumorresektion von einer Teilbestrahlung bezüglich des Überlebens (rezidivfrei und overall) und der Lebensqualität im Vergleich zu Patienten, die eine konventionelle Ganz-Brust-Bestrahlung erhalten?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten (m/w) nach Resektion des Tumors (lokal begrenztes Mammakarzinom?); (nach brusterhaltender OP?)</td>
<td>Teilbrustbestrahlung/Brachytherapie</td>
<td>Ganz-Brust-Bestrahlung</td>
<td>Rezidivfreies Überleben Overall-Survival Lokoregionäre Rückfallrate Akute Toxizität Späte Toxizität Quality of Life</td>
<td>Systematische Übersichtsarbeiten</td>
<td>2011 - Aktuell</td>
</tr>
</tbody>
</table>
Tabelle 22: Fragestellung Kapitel 4.6 Adjuvante Strahlentherapie zum Thema Hypofraktionierung (Schlüsselfrage 4.6-3)

Klinische Frage: Welchen Stellenwert hat die Hypofraktionierung?

Schlüsselfrage 4.6-3: Profitieren Brustkrebspatienten (m/w) nach erfolgter Tumorresektion von einer Hypofraktionierung bezüglich des Überlebens (rezidivfrei und overall) und der Lebensqualität im Vergleich zu Patienten, die eine konventionelle Ganz-Brust-Bestrahlung erhalten?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patienten (m/w) nach Resektion des Tumors (lokal begrenztes Mammakarzinom?); (nach brusterhaltender OP?)</td>
<td>Hypofraktionierung</td>
<td>Ganz-Brust-Bestrahlung</td>
<td>Rezidivfreies Überleben</td>
<td>Systematische Übersichtsarbeiten</td>
<td>2011 - Aktuell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Overall-Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lokoregionäre Rückfallrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Akute Toxizität</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Späte Toxizität</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quality of Life</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 23: Fragestellung Kapitel 4.7.5 Antikörpertherapien -Neoadjuvant zum Thema Trastuzumab bei kleinen HER2-positiven Tumoren (Schlüsselfrage 4.7.5-1)

| Klinische Frage: Welchen Stellenwert hat Trastuzumab bei HER2-positiven Mammakarzinomen <1cm? |
| Schlüsselfrage 4.7.5-1: Ist die Behandlung von Brustkrebspatienten mit HER2-positiven Mammakarzinomen <1cm mit Trastuzumab (mit oder ohne Chemotherapie) hinsichtlich des progressionsfreien Überlebens (PFS) bzw. dem Overall Survival (OS) bzw. der Lebensqualität (QoL) im Vergleich zu bisherigen Therapien (Operation, Bestrahlung, oder Kombination oder Chemotherapie) überlegen? |
| --- | --- | --- | --- | --- |
| Population | Intervention | Kontrolle | Outcomes | Studien-design | zeitl. Einschränkung |
| Brustkrebspatienten (m/w) mit HER2-positiv mit Mammakarzinomen kleiner (<) 1cm Durchmesser | Trastuzumab (mit oder ohne Chemotherapie) | Operation, Bestrahlung, oder Kombination oder Chemotherapie | Progressionsfreies Überleben, Overall Survival, Quality of Life | Systematische Übersichtsarbeiten | 2006 - Aktuell |
Tabelle 24: Fragestellung Kapitel 4.7.5 Antikörpertherapien - Neoadjuvant zum Thema Dauer von Trastuzumab bei HER2-positiven Tumoren (Schlüsselfrage 4.7.5-2)

Klinische Frage: Für welche Dauer sollte Trastuzumab gegeben werden?

Schlüsselfrage 4.7.5-2: Gibt es Evidenz, dass für die Behandlung von Brustkrebspatienten mit HER2-positiven Mammakarzinomen mit Trastuzumab für 1 Jahr im Vergleich zur Einnahme von > bzw. < 1 Jahr hinsichtlich des progressionsfreien Überlebens (PFS) bzw. dem Overall Survival (OS) bzw. der Lebensqualität (QoL) Unterschiede bestehen?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studien-design</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brustkrebspatienten (m/w) mit HER2-positiv mit Mammakarzinomen</td>
<td>Trastuzumab 1 Jahr</td>
<td>Trastuzumab > 1 Jahr Trastuzumab < 1 Jahr</td>
<td>Progressionsfreies Überleben Overall Survival Quality of Life</td>
<td>Systematische Übersichtsarbeiten</td>
<td>2006 - Aktuell</td>
</tr>
</tbody>
</table>
Klinische Frage: Welchen Stellenwert hat die Systemtherapie für ein lymphogenes Rezidiv?

Schlüsselfrage 5.3-1: Ist die Behandlung von Brustkrebspatienten (Erstdiagnose: pN0-pN+) bei ipsilateralem, supraclaviculärem, oder kontralateralem Lymphknotenrezidiv (pN1-pN3, M=0) mit systemischen Therapien (Chemo-/Hormontherapie entsprechend dem Tumorprofil) hinsichtlich des progressionsfreien Überlebens (PFS) bzw. dem Overall Survival (OS) bzw. der Lebensqualität (QoL) im Vergleich zu bisherigen Therapien (Operation, Bestrahlung, oder Kombination) überlegen?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brustkrebspatienten (m/w) (unabhängig von der Vortherapie) bei (ipsilateralem, supraclaviculärem, kontralateralem) Rezidiv mit Lymphknotenbefall (initial n=0) T1-T4 pN0-pN+ Ohne vorausgegangenen Befund (Einschlusskriterium: pN0 (histologisch keine axillären Lk-Metastasen)) Keine Fernmetastasen</td>
<td>(je nach Tumorprofil) - endokrine Therapie bei endokrin responsivem Rezidiv oder - Chemotherapie +/- zielgerichtete Therapie nach Tumorprofil) - Resektion (sofern durchführbar)</td>
<td>OP +/- Radiatio</td>
<td>Patientenrelevantes Outcome: Lokoregionäre Rückfallrate Progressionsfreies Überleben Overall Survival Quality of Life akute und späte Toxizität</td>
<td>Systematische Übersichtsarbeiten, RCTs, Observational Studies</td>
<td>2007 - Aktuell</td>
</tr>
<tr>
<td>Klinische Frage: Welche Therapieoptionen gibt es bei Hirnmetastasen?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schülsselfrage 5.4-1: Profitieren Brustkrebspatienten mit Hirnmetastasen (Stage IV, M1) von systemischen Therapien (Chemo-/Hormontherapie) hinsichtlich des progressionsfreien Überlebens (PFS) und/oder dem Overall Survival (OAS) und/oder der Lebensqualität (QoL) im Vergleich zu bisherigen Therapien (Operation, Radiatio, oder Kombination)?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>Intervention</td>
<td>Kontrolle</td>
<td>Outcomes</td>
<td>Studiendesign</td>
<td>zeitl. Einschränkung</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Brustkrebspatienten (m/w) mit Hirnmetastasierung</td>
<td>Systemtherapien: Systemtherapie (Chemotherapie/Hormontherapie)</td>
<td>Verglichen mit bisherigen Verfahren: OP/Radiofrequenzablation</td>
<td>Patientenrelevante Outcomes: Progressions-freies Überleben, Overall Survival, Quality of Life</td>
<td>Systematische Übersichtsarbeiten, RCTs</td>
<td>2007 - Aktuell</td>
</tr>
</tbody>
</table>
Tabelle 27: Fragestellung Kapitel 5.4 Fernmetastasen - Spezielle Metastasenlokalisierung zum Thema Lebermetastasen (Schlüsselfrage 5.4-2)

Klinische Frage: Welche Therapieoptionen gibt es bei isolierten Lebermetastasen?

Schlüsselfrage 5.4-2: Profitieren Brustkrebspatienten mit isolierten Lebermetastasen (Stage IV, M1) von lokalen Therapien (Operation, Radiofrequenzablation, LITT, TACE, SIRT oder Kombination) im Vergleich zu etablierten systemischen Therapien (Chemotherapie/Hormontherapie/Antikörpertherapie/mTor-/CDK4/6-Inhibitoren) hinsichtlich des progressionsfreien Überlebens (PFS) und/oder dem Overall Survival (OAS) und/oder der Lebensqualität (QoL)?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brustkrebspatienten (m/w) mit isolierter Lebermetastasierung Stage IV (M=1)</td>
<td>Lokale Therapieverfahren: OP/Radiofrequenzablation/LITT/TACE/SIRT</td>
<td>Verglichen mit bisherigen Verfahren: Systemtherapie (Chemotherapie/Hormontherapie/Antikörpertherapie mTor-/CDK4/6-Inhibitoren)</td>
<td>Patientenrelevante Outcomes: Progressionsfreies Überleben, Overall Survival, Quality of Life</td>
<td>Systematische Übersichtsarbeiten, RCT, Observational Studies</td>
<td>2007 – Aktuell (für systematische Übersichtsarbeiten) 2010 – Aktuell (für RCTs und Observational Studies, da für 2010 die letzte systematische Suche in einem der identifizierten SR (Bergenfeldt et al., 2011) nach einer der unter Intervention genannten Methoden stattgefunden hat)</td>
</tr>
</tbody>
</table>
Tabelle 28: Fragestellung Kapitel 5.4 Fernmetastasen - Chemo/targeted zum Thema Chemotherapieregime (Schlüsselfrage 5.4-3)

<table>
<thead>
<tr>
<th>Klinische Frage: Welche Chemotherapieoptionen (Mono, Poly, Sequentiell) sollte bei Fernmetastasen gegeben werden?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Schlüsselfrage 5.4-3: Ist eine Chemotherapie-Form (Mono, Poly, Sequentiell) bei Brustkrebspatienten mit Fernmetastasen (Stage IV, M1) hinsichtlich des progressionsfreien Überlebens (PFS) und/oder dem Overall Survival (OAS) und/oder der Lebensqualität (QoL) den anderen überlegen?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brustkrebspatienten (m/w) mit Fernmetastasierung · Stage IV (M=1)</td>
<td>(1) Monozyklische Chemotherapie oder (2) Polyzyklische Chemotherapie oder (3) Sequentielle Chemotherapie</td>
<td>(1) Polyzyklische Chemotherapie, Sequentielle Chemotherapie (2) Monozyklische Chemotherapie, Sequentielle Chemotherapie (3)Polyzyklische Chemotherapie, Monozyklische Chemotherapie</td>
<td>Patientenrelevante Outcomes: Progressionsfreies Überleben Overall Survival Quality of Life</td>
<td>Systematische Übersichtsarbeiten</td>
<td>2010 - Aktuell</td>
</tr>
</tbody>
</table>
Tabelle 29: Fragestellung Kapitel 6.4 Nachsorge zum Thema Ultraschall in der Nachsorge (Schlüsselfrage 6.4-1)

| Klinische Frage: | Welchen diagnostischen Stellenwert (accuracy and efficacy) hat die zusätzliche Ultraschalluntersuchung von Brustkrebspatientinnen nach primär kurativer Behandlung in der Nachsorge? |
| Schlüsselfrage 6.4-1: | Profitieren Brustkrebspatienten nach brusterhaltender Therapie und / oder Mastektomie nach primärer kurativer Therapie (Stadium UICC I-II) von Ultraschalluntersuchungen beider Brüste oder Thoraxwand und kontralaterale Brust und Axilla beidseits in der Nachsorge im Vergleich von Patientinnen mit Standard Nachsorge durch klinische Untersuchung, Palpation und alleiniger Mammographie bezüglich einer frühen Entdeckung eines (okkuliten / nicht palpablen) lokoregionären ipsi- oder kontralateralen Rezidivs oder Zweitkarzinoms? |

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brustkrebspatienten (m/w) nach brusterhaltender und / oder Mastektomie nach primärer kurativer Therapie in</td>
<td>Standardversorgung und zusätzlicher Ultraschall beider Brüste oder Thoraxwand und kontralaterale Brust und Axilla beidseits</td>
<td>Standard-versorgung: (Verglichen mit) Mammographie und Palpation (klinische Untersuchung)</td>
<td>Patientenrelevante Outcomes: · Rezidivrate (lokoregionären Rezidiv) · Biopsierate</td>
<td>Systematische Übersichtsarbeiten, RCTs, Observational studies</td>
<td>2005-aktuell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Versorgungs-forschungsrelevante Outcomes: Sensitivität, Spezifität, richtig/ falsch Positive, richtig/falsch Negative, falsch Positivrate, falsch Negativrade</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 30: Fragestellung Kapitel Mammakarzinom und Schwangerschaft zum Thema Brustkrebs während der Schwangerschaft (SF Schwanger 1)

Klinische Frage: Welchen Stellenwert hat die Systemtherapie während der Schwangerschaft?

Schlüsselfrage Schwangerschaft 1: Welche Folgen hat die Gabe von systemischen Therapien (Chemo, endokrin) bei schwangeren Patientinnen im Vergleich zur Therapie mit nur lokalen Verfahren (Operation +/- SNB) bezogen auf Quality of Life, Overall Survival, Progressionsfreies Überleben, Nebenwirkungen (auch für das Neugeborene) während und nach der Schwangerschaft?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwangere Brustkrebspatientinnen</td>
<td>Systemtherapie (ggf. Resektion)</td>
<td>lokalen Verfahren (Operation +/- SNB)</td>
<td>Overall Survival, Progressionsfreies Überleben, Nebenwirkungen (auch für das Neugeborene) während und nach der Schwangerschaft</td>
<td>Systematische Übersichtsarbeiten</td>
<td>2007 - Aktuell</td>
</tr>
</tbody>
</table>
Tabelle 31: Fragestellung Kapitel Mammakarzinom und Schwangerschaft zum Thema Schwangerschaft nach Brustkrebs (SF Schwanger 2)

Klinische Frage: Welchen Auswirkung hat die Schwangerschaft auf die Brustkrebskrankung?

Schlüsselfrage Schwangerschaft 2: Haben Frauen, die nach Brustkrebskrankung schwanger werden ein verändertes Outcome (bezogen auf Survival (DFS, OS), QoL, Safety, Subgruppe HR+ vs HR-; Abstand der Schwangerschaft zur Brustkrebsbehandlung) als Frauen, die nicht schwanger werden?

<table>
<thead>
<tr>
<th>Population</th>
<th>Intervention</th>
<th>Kontrolle</th>
<th>Outcomes</th>
<th>Studiendesign</th>
<th>zeitl. Einschränkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frauen, nach ihrer</td>
<td>Schwangerschaft</td>
<td>Keine Schwangerschaft</td>
<td>Survival (DFS, OS), QoL, Safety Subgruppe HR+ vs HR-; Abstand zur Brustkrebskrankung</td>
<td>Sysematische Übersichtsarbeiten, Observational Studies</td>
<td>2000 - Aktuell</td>
</tr>
</tbody>
</table>
13.4. Evidenztabellen

Tabelle 11: Evidenztabelle zur Schlüsselfrage SF 3.3-1 Genpanel Früherkennung

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Saadatmand et al.</td>
<td>Retrospective cohort study</td>
<td>Intervention group (patients from the MRISC study) were screened (mammogram or MRI)</td>
<td>Metastasis-free survival, tumour stage</td>
<td>More smaller (<T2) tumour stages in intervention group at detection: 87% versus 52% in controls (p< 0.001)</td>
<td>Small sample size</td>
</tr>
<tr>
<td>YEAR: 2015</td>
<td>N=186 individuals from two cohorts were eligible</td>
<td>Controls didn’t receive screening if younger than 50 years or underwent biennial mammogram</td>
<td>Median follow-up: 9 yrs</td>
<td>No significant difference in Bloom and Richardson grade between groups (p= 0.08)</td>
<td>Retrospective design</td>
</tr>
<tr>
<td>JOURNAL: International Journal of Cancer [133]</td>
<td>Median age: 44yrs</td>
<td>Intervention and control group were matched for risk group, year of diagnosis and age at diagnosis</td>
<td></td>
<td></td>
<td>Ductal carcinoma in situ were considered as <T2 carcinomas</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: 25-70 years old, genetic or familial predisposition for BC, cumulative lifetime risk (CLTR) >/= 15%</td>
<td></td>
<td></td>
<td>Controls were not aware of their mutation</td>
<td>Source of funding: ZonMW, The Netherlands</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: symptoms of medical history of BC</td>
<td></td>
<td></td>
<td>Due to methodological constraints we propose to downgrade the level of evidence from 2b to 3a</td>
<td></td>
</tr>
<tr>
<td>AUTHOR: Obdeijn et al.</td>
<td>Retrospective, consecutive cohort study</td>
<td>Study group received MRI and digital mammography</td>
<td>Differences in sensitivity, differences in proportion of tumour stage</td>
<td>Detected tumours in the study group of Tis and T1a/b stage : 60.6% (57/94) versus in the symptomatic group 16.7% (3/18) p=0.001</td>
<td>Small sample size</td>
</tr>
<tr>
<td>YEAR: 2014</td>
<td>N=111 BRCA1 mutation carriers were included</td>
<td>Symptomatic group did not receive intensive surveillance due to unknown mutation before BC diagnosis</td>
<td></td>
<td>Detected tumours in the study group of node negative type: 83 %</td>
<td>Retrospective design</td>
</tr>
<tr>
<td>JOURNAL: Breast Cancer Research and Treatment [134]</td>
<td>Mean age: 44.2 yrs</td>
<td></td>
<td></td>
<td></td>
<td>Only patients with BC included</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: BRCA2 mutation carriers with detected BC during</td>
<td></td>
<td></td>
<td></td>
<td>BI-RADS classification was used</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Source of funding: n.a.</td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>AUTHOR: Evans et al.</td>
<td>Prospective, multicentre cohort study (MARIBS)</td>
<td>MRI surveillance or prior history of BC, BC between January 2003 and March 2013</td>
<td>BC incidence rate</td>
<td>(78/94) versus 55.6 % (10/18) p=0.023</td>
<td>Due to methodological constraints we propose to downgrade the level of evidence from 2b to 2c</td>
</tr>
<tr>
<td>YEAR: 2009</td>
<td>N=759 women were eligible</td>
<td>Mean follow-up: 7yrs</td>
<td>Incidence rate at entry: 22 per 1.000 woman-years</td>
<td>MARIBS study is based in the UK</td>
<td></td>
</tr>
<tr>
<td>JOURNAL: American Association for Cancer Research</td>
<td>Median age: n.a.</td>
<td>Inclusion criteria: BRCA1/2, TP53/LFS, four or more cases of cancer (BC diagnosed <60yrs, male BC or ovarian cancer diagnosed at any age (for all details see the original paper)</td>
<td>Incidence rate in total follow-up: 12 per 1.000 woman-years</td>
<td>Source of funding: Medical Research Council, Cancer Research UK Project, UK National Health Service, Yorkshire Cancer Research Campaign</td>
<td></td>
</tr>
<tr>
<td>[135]</td>
<td>Exclusion criteria: previous BC, ovarian cancer diagnosed within 2y before study entry, women tested negative for mutation during study were excluded afterwards</td>
<td>Inclusion criteria: BRCA1/2, TP53/LFS, four or more cases of cancer (BC diagnosed <60yrs, male BC or ovarian cancer diagnosed at any age (for all details see the original paper)</td>
<td>Incidence rate rose to 26 and 16 per 1.000 women after excluding those with negative mutation test result</td>
<td>Level of evidence 2a</td>
<td></td>
</tr>
</tbody>
</table>

BC incidence:
- **BRCA2**: 22.3% (95% CI 18.0-26.6)
- **BRCA1**: 14.7% (95% CI 11.8-17.6)
- **TP53/LFS**: 11.4% (95% CI 5.2-17.6)
- **4+ eligible**: 3.8% (95% CI 2.8-4.8)
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Metcalfe et al.</td>
<td>Retrospective multicentre cohort study</td>
<td>Women who underwent oophorectomy vs. women who didn’t</td>
<td>Primary end point: death of BC</td>
<td>BC-specific mortality: Oophorectomy N=21 deaths occurred in the surgery group versus n=107 in the surveillance group:</td>
<td>Retrospective design</td>
</tr>
<tr>
<td>YEAR: 2015</td>
<td>N=676 BRCA1/2 mutation carriers were included</td>
<td></td>
<td>Secondary end point: death of all causes HRs were “adjusted for mutation status (BRCA1 vs BRCA2), age at diagnosis, ER status, tumor size, lymph node status, receipt of chemotherapy, and receipt of oophorectomy Mean follow-up: 12.5 yrs</td>
<td>All patients (multivariate*, time-dependent): HR=0.46 (95% CI 0.27-0.79); BRCA1 carriers (n=411) (multivariate* model): HR=0.38 (95% CI 0.19-0.77) BRCA2 carriers (n=254) (multivariate* model): HR=0.57 (95% CI 0.23-1.43)</td>
<td>Long follow-up time (12.5 yrs) Patient enrolment started in 1975</td>
</tr>
<tr>
<td>JOURNAL: JAMA Oncology</td>
<td>Age at diagnosis: 22-65yrs</td>
<td></td>
<td></td>
<td>All-cause mortality: Oophorectomy All patients (multivariate analysis*, time-dependent) HR=0.35 (95% CI 0.22-0.56)</td>
<td>Source of funding: Canadian Breast Cancer Foundation Due to the retrospective character we propose to downgrade the level of evidence from 2b to 2c</td>
</tr>
<tr>
<td>[136]</td>
<td>Inclusion criteria: BC diagnosis at 65 yrs or younger (between 1975 to 2008), documented BRCA1 or BRCA2 mutation in the family and at least one case of invasive BC, tumour grade I-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: Resided out of North America, prior cancer diagnosis, affected non-carriers, oophorectomy before BC diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTHOR: Fakkert et al.</td>
<td>Prospective, consecutive single-institution study</td>
<td>Women undergoing salpingo-oophorectomy (RRSO) versus women who receive annual complete breast</td>
<td>Incidence</td>
<td>N=350 new primary BC were diagnosed and 143 (40.9%) of those underwent oophorectomy</td>
<td>Short (mean) follow-up (5.6 yrs) No appraisal of selection bias, lead-time bias, recall bias</td>
</tr>
<tr>
<td>YEAR: 2012</td>
<td>N=162 BRCA1/2 mutation carriers, who</td>
<td></td>
<td>Follow-up range: 2-228 mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
</tbody>
</table>
| JOURNAL: Cancer Prevention Research [137] | were considered menopausal were analysed
Median age: 41yrs
Inclusion criteria: 51 years or younger, women with 1 or 2 breast in situ, women with previous BC if BC screening was continued on the remaining breast
Exclusion criteria: ovarian cancer | examination, mammography and MRI altering by 6 months (since 2008) | BRCA1: n=2,969
BRCA2: n=725
*Annual BC incidence:
All: 1.7% (350 cases/20,700 person years(PY))
No oophorectomy all: 1.6% (207/13,052 PY)
Oophorectomy all: 1.9% (143/7,648 PY)
No oophorectomy BRCA1: 1.6% (170/10,806 PY)
Oophorectomy BRCA1: 2.0% (122/6,055 PY)
No oophorectomy BRCA2: 2.3% (36/1,550 PY)
Oophorectomy BRCA2: 1% (21/2,163 PY)
Multivariate analysis:
BRCA1 or BRCA2 carrier: HR= 0.89 (95% CI 0.69-1.14),
BRCA1 group: HR=0.97 (95% CI 0.73-1.29)
BRCA2 group: 0.68 (95% CI 0.38-1.21)
BC diagnosis before 50yr: | Women with a unilateral oophorectomy were included in the no-oophorectomy group.
Data were collected through questionnaires every 2 years
Source of funding: National Cancer Institute, Canadian Cancer Society Research Institute | Due to a short follow up time and methodological constraints we propose to downgrade the level of evidence from 2b to 3a |
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Kotsopoulos et al.</td>
<td>Prospective, multi-centre cohort study N=3,722 women with BRCA mutation were eligible Mean age: 33.4yrs (no oophorectomy) and 46.3 yrs (oophorectomy group) Inclusion criteria: no history of cancer, at least one completed follow-up questionnaire Exclusion criteria: prior breast, ovarian or other cancer diagnosis, bilateral mastectomy at baseline, missing information on mastectomy, missing age at menarche</td>
<td>Women undergoing prophylactic bilateral oophorectomy compared to women who did not undergo bilateral oophorectomy</td>
<td>BC incidence Mean follow up: 5.6 yrs Multivariable analyses adjusted for age at baseline, family history of BC, country of residence, oral contraceptive use, age at menarche, parity, breast feeding</td>
<td>BRCA1 group: HR= 0.84 (95% CI 0.58-1.21) BRCA2 group: HR=0.17 (95% CI 0.05-0.61) N=350 new primary BC were diagnosed and 143 (40.9%) of those underwent oophorectomy</td>
<td>Short (mean) follow-up (5.6 yrs) No appraisal of selection bias, lead-time bias, recall bias Women with a unilateral oophorectomy were included in the no-oophorectomy group. Data were collected through questionnaires every 2 years Source of funding: National Cancer Institute, Canadian Cancer Society Research Institute Due to a short follow up time and methodological constraints we propose to downgrade the level of evidence from 2b to 3a</td>
</tr>
<tr>
<td>YEAR: 2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL: J Natl Cancer Inst [138]</td>
<td>[Nachtrag: Expertenbeitrag]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
</tbody>
</table>
| AUTHOR: Domchek et al. | Prospective multi-centre cohort study (PROSE study group) N=2,482 women tested positive for BRCA1 or BRCA2 were enrolled. Mean age: 40.7 yrs at risk-reducing mastectomy, 43.2 yrs at Salpingo-Oophorectomy. Inclusion criteria: no OC diagnosis and no RRSO at time of ascertainment. Exclusion criteria: Cancer diagnosis within | Risk-reducing Salpingo risk-reducing mastectomy (RRM) or oophorectomy (RRSO) compared to surveillance in BRCA1 or BRCA2 mutation carriers | Risk of developing BRCA-associated BC after RRSO: Primary end point: BC. Risk of developing BRCA associated OC after RRSO: OC BC Second primary BC mortality Median follow up: 3.65yrs (intervention group), 4.29yrs (control group) | Multivariate analysis*:
BRCA1 or BRCA2 carrier: HR= 0.89 (95% CI 0.69-1.14), BRCA1 group: HR=0.97 (95% CI 0.73-1.29)
BRCA2 group: 0.68 (95% CI 0.38-1.21)
BC diagnosis before 50yr:
BRCA1 group: HR= 0.84 (95% CI 0.58-1.21)
BRCA2 group: HR=0.17 (95% CI 0.05-0.61) | Short follow up (3-4yrs) BC events at the time of prophylactic mastectomy were excluded Follow up started at time of ascertainment and not at time of genetic testing No data on compliance of surveillance group Source of funding: Public Health Service, University of Pennsylvania Cancer Center, Cancer Genetics Network, Marjorie Cohen Research Fund, Dana-Farber/Harvard |
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 months of follow-up, patients who had both BRCA1 and BRCA2 mutations, less than 6mo of follow up, incident cases</td>
<td></td>
<td>Adjusted for year of birth</td>
<td>$BRCA1$ and RRM after 50yrs: HR= 1.36 (95% CI 0.26-7.05) [significant interaction (P=0.027)] $BRCA2$ (n=501): HR=0.36 (95% CI 0.16-0.82)</td>
<td>Cancer Center SPORE in BC, Department of Defense, Due to short follow up and other methodological constraints we propose to downgrade the level of evidence from 2b to 2c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$RBSO$ and OC risk in women without primary BC (n=1,557): All (n=1,367): HR=0.28 (95% CI 0.12-0.69) $BRCA1$ (n=880): HR=0.31 (95% CI 0.12-0.82), adjusted for year of birth, oral contraceptive use; and stratified by centre (where information on OCP was missing, patients were excluded from that analysis) $BRCA2$ (n=554): no OC occurred in intervention group</td>
<td>CAVE: With the approach of Heemskeer-Gerritsen (RRSO as time-dependent variable): $BRCA1$: HR= 0.63 (95% CI 0.42-0.93) $BRCA2$: HR= 0.40 (95% CI 0.19-0.84)</td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>AUTHOR: De Felice et al.</td>
<td>Systematic review and meta-analysis of n=4 prospective studies</td>
<td>Preventive mastectomy compared with follow-up policy</td>
<td>Risk of developing BC</td>
<td>BRCA1/2: HR= 0.59 (95% CI 0.42-0.82) Compared to analyses without RRSO as time-dependent variable (and patients enrolled at time of ascertainment): n=286 events occurred: BRCA1: 0.56 (95%CI 0.39-0.81) BRCA2: 0.42 (95%CI 0.21-0.86) BRCA1/2: 0.51 (95%CI 0.36-0.70) [140]</td>
<td>Substantial heterogeneity (I²=59%, p=0.06) between all studies</td>
</tr>
<tr>
<td>YEAR: 2015</td>
<td>A total of n= 2,635 BRCA1/2 mutation carriers was included in the analysis</td>
<td></td>
<td></td>
<td></td>
<td>No specification of surveillance policies</td>
</tr>
<tr>
<td>JOURNAL: Annals of Surgical Oncology</td>
<td>Mean/median age: n.a.</td>
<td></td>
<td></td>
<td></td>
<td>Short follow-up of subgroup studies (3 yrs)</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: patients with proven mutation, cancer-free at study entry, published in English</td>
<td></td>
<td></td>
<td></td>
<td>Due to heterogeneity (and therefore subgroup analysis) and a short follow-up time we propose to downgrade the level of evidence from 2a to 2c</td>
</tr>
<tr>
<td>AUTHORS: Heemskerk-Gerritsen et al.</td>
<td>Prospective, multi-centre cohort study (HEBON study)</td>
<td>BRCA1/2 mutation carriers who underwent CRRM compared to</td>
<td>Survival analysis</td>
<td>Surgery group n=242 (42%)</td>
<td>More of CRRM patients has been treated with chemotherapy for PBC</td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>YEAR: 2015</td>
<td>N=583 BRCA1/2 mutation carriers with primary breast cancer were included</td>
<td>women underwent surveillance</td>
<td>Median follow-up after primary BC: 11.3 yrs (surveillance group) and 11.4 yrs (surgery group)</td>
<td>Surveillance group: n=341 (58%)</td>
<td>Prospective design</td>
</tr>
<tr>
<td>JOURNAL: Int J Cancer [142]</td>
<td>Median age at study inclusion: 47yrs (surveillance group) and 41 yrs (surgery group)</td>
<td>CRRM: contralateral risk-reducing mastectomy PYO: person years of observation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: no history of bilateral BC or ovarian cancer, no distant disease, at least one unaffected breast in situ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: missing data on date of cancer diagnosis, DNA test results, surgery or death</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tumour stage (UICC classification 2002) of the surgery versus surveillance group:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCIS: 11(5%) vs 18(6%) T1: 12(5%) vs 16(5%) T1a/b: 41(18%) vs 47(15%) T1c: 79(35%) vs 100(33%) T2+: 83(37%) vs 126(41%); p=0.712</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality (CRRM group vs surveillance group): 9.6 (6.1-15.1) vs 21.6 (16.9-27.6) per 1000PYO HR= 0.49 (95%CI 0.29-0.82), adjusted for RRSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mortality (additional analysis starts 2 yrs after PBC or at date of DNA diagnosis; whatever was first): 9.8 (6.2-15.5) vs 21.0 (16.1-27.2) per 1000PYO HR=0.55 (95% CI 0.32-0.95), adjusted for RRSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source of funding: Dutch Pink Ribbon Foundation and Dutch A Sister’s Hope Inc., Dutch Cancer Society, Netherlands Organization of Scientific Research, Pink Ribbon, BBMRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level of evidence 2b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
</tbody>
</table>
| AUTHOR: Evans et al. | Retrospective cohort study | Women who underwent contralateral mastectomy versus women who received regularly follow-up after unilateral mastectomy only | Survival analysis | **Tumour stage** (n CRRM vs n no CRRM):
Stage 0: 6 vs 6
Stage 1: 36 vs 36
Stage 2a: 37 vs 37
Stage 2b: 18 vs 16
Stage 3: 3 vs 3 | Big patient collective (n=718)
Patient enrolment started in 1985
Source of funding: n.a.
Due to the retrospective character we propose to downgrade the **level of evidence** from 2b to 2c |
| YEAR: 2013 | N=718 BRCA1/2 mutation carriers with invasive BC were included | CRRM: contralateral risk-reducing mastectomy
BSO: bilateral salpingo-oophorectomy | Historical controls were matched for gene involvement, tumour stage and grade ER status if available | Median follow-up time from CRRM: 7.2 yrs and 8.6 yrs in the non-CRRM group; overall range: 0.7-26yrs |
All-cause mortality:
CRRM+BSO (n=62) vs. no surgery (n=473): HR=0.16 (95% CI 0.06-0.44)
CRRM, no BSO (n=43) vs. no surgery (n=473): HR=0.48 (95% CI 0.19-1.14)
Matched analysis: n=105 individuals with CRRM were matched to n=105 non-CRRM patients
CRRM vs. no CRRM (matched for BSO): HR=0.43 (95% CI 0.20-0.95)
CRRM vs. no CRRM (matched for CRRM date): HR=0.37 (95% CI 0.17-0.80)
BSO: bilateral salpingo-oophorectomy |
| JOURNAL: Breast Cancer Research and Treatment | Mean age:
Surgery group: 40.3yrs
Non-surgery group: 41.5yrs
Inclusion criteria: first unilateral breast cancer between 1985-2010, positive BRCA1/2 diagnosis | | | |
Tabelle 13: Evidenztabelle zur Schlüsselfrage SF 4.2-1 Biopsienadel

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Ahn et al.</td>
<td>Cross-sectional study</td>
<td>(Axillary Sonographic and) fine-needle aspiration biopsy (FNAB) versus core needle biopsy (CNB)</td>
<td>Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV)</td>
<td>FNAB:</td>
<td>FNAB and CNB were performed in the same individual</td>
</tr>
<tr>
<td>YEAR: 2013</td>
<td>N=52 patients with newly diagnosed breast cancer were enrolled</td>
<td>FNAB: 21-gauge needle attached to a 10-mL syringe under the application of moderate (1–3-mL) negative pressure</td>
<td></td>
<td>CNB:</td>
<td>Different radiologist performing reference standard</td>
</tr>
<tr>
<td>JOURNAL: J Ultrasound Med [144]</td>
<td>Median age: 49 yrs</td>
<td>CNB: 16- or 18-gauge semiautomated gun with a coaxial needle (Stericut; TSK Laboratory, Tochigi-Ken, Japan)</td>
<td></td>
<td>Sensitivity:</td>
<td>Histological findings: <0.2 mm or 200 cells were considered as N0(i)</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: Sonographic whole-breast and axilla examination</td>
<td>Reference standard: sentinel lymph node biopsy or axillary lymph node dissection</td>
<td></td>
<td>Specificity:</td>
<td>Lack of standardized patient criteria; selection bias</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: primary systemic chemotherapy and negative results</td>
<td></td>
<td></td>
<td>PPV:</td>
<td>Small sample size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NPV:</td>
<td>TNM staging system of the American Joint Committee on Cancer (Chicago, IL), 7th edition was applied</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Source of funding: Seoul National University Bundang Hospital Research Fund</td>
</tr>
<tr>
<td>AUTHOR: Ganott et al.</td>
<td>Prospective cohort study</td>
<td>Fine-needle aspiration biopsy (FNAB) versus core needle biopsy (CNB) in addition with axillary sonographic</td>
<td>Sensitivity</td>
<td>Sensitivity</td>
<td>Due to methodological constraints we propose to downgrade the level of evidence from 1b to 2a</td>
</tr>
<tr>
<td>YEAR: 2014</td>
<td>N=95 women were eligible</td>
<td></td>
<td></td>
<td>CNB: 87% (61/70)</td>
<td>47 patients had chemotherapy prior to surgery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FNAB: 79% (55/70)</td>
<td>No 95% CI provided</td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>JOURNAL: ISRN Oncology [145]</td>
<td>Median/mean age: n.a. Inclusion criteria: suspected or recently diagnosed BC, at least one lymph node in the ipsilateral axilla judged to be abnormal</td>
<td>FNAB: 21 or 25g, 2-inch needle, with one (90 cases), 2 (11 cases), or 3 (4 cases) needle entries of multiple needle excursion</td>
<td>FNAB: 72.5% (95% CI 59.1-82.9); (37 of 51); Specificity: 100% (95% CI 79.6-100); (15 of 15)</td>
<td>(p=0.18; 95% CI 0.032-0.166)</td>
<td>N=4 patients were biopsy positive but didn’t undergo surgery FNAB and CNB were performed in the same individual Pathologist was blinded to FNAB, CNB result Small sample size No strict threshold for cortical thickness was used Selection bias due to exclusion criteria Source of funding: Magee-Womens Foundation and Suros Surgical, Inc. (now Hologic, Inc.) Due to methodological constraints we propose to downgrade the level of evidence from 1b to 2a</td>
</tr>
<tr>
<td>AUTHOR: Rautiainen et al.</td>
<td>Cross-sectional single-centre study N=66 consecutive axillae were eligible Mean age: 61.4 yrs</td>
<td>fine-needle aspiration biopsy (FNAB) versus core-needle biopsy (CNB) of the axillary lymph node (LNs)</td>
<td>Sensitivity, specificity, Negative predictive value, positive predictive value</td>
<td>FNAB: Sensitivity: 72.5% (95% CI 59.1-82.9); (37 of 51); Specificity: 100% (95% CI 79.6-100); (15 of 15)</td>
<td>Pathologists were blinded to other findings</td>
</tr>
<tr>
<td>YEAR: 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL: Radiology [146]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>--</td>
</tr>
</tbody>
</table>
| AUTHOR: Rao et al. YEAR: 2009 | Single-institution cross sectional study | Fine needle aspiration biopsy (FNAB) versus core needle biopsy (CNB) in addition with axillary sonographic | Sensitivity, specificity, TP, TN, FN | CNB (n=25):
Sensitivity: 100% (95% CI 30-100%)
Specificity: 82% (95% CI 67-96%)
PPV: 90.9% (81.6-95.8) | Reference standard (ALND, SLNB) was performed by one of two trained surgical oncologists |
| | N=47 patients met final study criteria | | | NPV: 91.2% (95% CI 92.1-100)
PPV: 90.9% (81.6-95.8) | The values are related to the subpopulation (of n=66 lymph nodes), that fit the inclusion criteria for biopsy and FNAB and CNB |
| | | | | Wide 95% CI
Small sample size | |
| | | | | Source of funding: Kuopio University Hospital EVO, North Savo Cancer Society, Aleksanteri Mikkonen Foundation, Olvi Foundation | |
| | | | | Due to methodological constraints we propose to downgrade the level of evidence from 1b to 2a | |

Source

Inclusion criteria: cortical thickness >2mm, abnormal morphologic character (lobulated or eccentric cortex, any eccentric or concentric thickening >2 mm, dislocated and/or absent fatty hilum, a cortex-to-hilum ratio >1, or a longitudinal axis-to-transverse axis ratio <2

Exclusion criteria: FNAB and CNB were not in the same lymph node
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
</table>
Specificity: 100% (95% CI 41-100%) Sensitivity: 75% (95% CI 49-88%) TP: n=12 TN: n=6 FN: n=4 | No significant differences between sensitivity of FNAB and CNB (p=0.11) | Hospital register data No information on blinding Small sample size Wide 95% CI Bias by indication might be possible FNAB and CNB were not performed in the same individual Retrospective evaluation Source of funding: n.a. Due to methodological constraints we propose to downgrade the level of evidence from 2b to 3a |
Tabelle 32: Evidenztabelle zur Schlüsselfrage SF 4.5-1 Multigentests

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Gluz et al.</td>
<td>Prospective randomized, multicentre trial (PlanB trial)</td>
<td>21-gene recurrence score (RS) (Oncotype DX) compared to traditional parameters (IHC)</td>
<td>Primary endpoint: disease-free survival</td>
<td>ER-positive and Pg-positive subpopulation: 54 distant relapses</td>
<td>Short follow-up (3yrs)</td>
</tr>
<tr>
<td>YEAR: 2016</td>
<td></td>
<td></td>
<td>Median follow-up: 35 mo</td>
<td>locally HR-positive patients; of these, 18.1% were classified as low RS</td>
<td></td>
</tr>
<tr>
<td>JOURNAL: Journal of Clinical Oncology</td>
<td>N=3.198 patients were enrolled</td>
<td></td>
<td></td>
<td>(<=11)</td>
<td>N= 2.421 (92%) patients were HR-positive</td>
</tr>
<tr>
<td>[148]</td>
<td>Median age: 56 yrs.</td>
<td></td>
<td></td>
<td>Tissue samples were centrally analysed</td>
<td>Chemotherapy was omitted on the basis of RS <=11 (in n=348 (15.3%) patients)</td>
</tr>
<tr>
<td>[Expertenbeitrag]</td>
<td>Inclusion criteria: n.a.</td>
<td></td>
<td></td>
<td>Subgroup of 35% patients was pN1</td>
<td>Source of funding:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roche, Genomic Health, TEVA Pharmaceuticals Industries, Celgene, Bayer HealthCare Pharmaceuticals, NanoString Technologies, Agendia NV, Amgen, AOK Rheinland/Hamburg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Due to a short follow-up we propose to downgrade the level of evidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>from 2b to 3a</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 32: Evidenztabelle zur Schlüsselfrage SF 4.5-1 Multigentests

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Cardoso et al.</td>
<td>Multi-institutional, randomized, controlled trial</td>
<td>Addition of genomic risk assessment (using the MammaPrint (70-gene signature)) to standard clinical risk assessment (using a modified)</td>
<td>Primary endpoint: 5-year Survival without distant metastasis</td>
<td>Low (genomic and clinical) risk group: n=2.745 patients (41%)</td>
<td>Non-Inferiority of genomic risk and untreated assessment (compared to clinical risk and treated) criteria of the study hypotheses were full-filled</td>
</tr>
<tr>
<td>YEAR: 2016</td>
<td></td>
<td></td>
<td></td>
<td>Low genomic/high clinical risk: n=592</td>
<td></td>
</tr>
</tbody>
</table>

Source of funding:
Roche, Genomic Health, TEVA Pharmaceuticals Industries, Celgene, Bayer HealthCare Pharmaceuticals, NanoString Technologies, Agendia NV, Amgen, AOK Rheinland/Hamburg

Due to a short follow-up we propose to downgrade the level of evidence from 2b to 3a
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOURNAL: New England Journal of Medicine [149] [Beitrag des Methodenteams]</td>
<td>N=6693 women with early stage breast cancer were enrolled</td>
<td>version of Adjuvant! Online (version 8.0)) to assist in chemotherapy decision</td>
<td>who received chemotherapy (clinical versus genomic risk assessment), overall survival and disease-free-survival</td>
<td>High genomic/low clinical risk: n=1550 5-year distant metastasis-free survival: patients with high clinical risk and low genomic risk who did not receive adjuvant chemotherapy (primary-test population) had a rate of survival without distant metastasis of 94.7% (95% CI 92.5 - 96.2); thus, the primary objective of the study (i.e., to show whether the lower boundary of the 95% confidence interval for the rate of survival without distant metastasis would be at least 92%) was achieved</td>
<td>20.9% patients had node-positive disease In initial study design patients had to have lymph-node-negative disease; this was changed in August 2009 and up to three positive lymph nodes were allowed. N=28 patients were falsely identified as high risk (genomic risk assessment) due to a change in the RNA-extraction solution and received chemotherapy Majority of the patients had luminal BC type Source of funding: European Commission Sixth Framework Program, to the TRANSBIG Network of Excellence, the Breast Cancer Research Foundation, Novartis, F. Hoffmann-La Roche, Sanofi-Aventis, Eli Lilly, Veridex, the U.S. National Cancer Institute, the European Breast Cancer Council–Breast Cancer Working Group (BCWG grant for the MINDACT biobank), the Jacqueline Seroussi Memorial Foundation for Cancer Research, Prix Mois</td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Buus et al. | Non-controlled randomized trial (TransATAC) | Estimation of distant recurrences estimated by Endopredict and Oncotype DX compared to clinical parameters | Primary end point: distant relapse-free survival | Chemotherapy (based on clinical risk, randomization): 95.9% (95% CI 94.0-97%)
No chemotherapy (based on genomic risk, randomization): 94.4% (95% CI 92.3-95.9%) | du Cancer du Sein, Susan G. Komen for the Cure,
| J Natl Cancer Inst | N=928 postmenopausal women were enrolled | Inclusion criteria: n.a. | | | Level of evidence 1b |
| [150] [Expertenbeitrag] | | | | | Long follow-up period |
| | | | | | Study population of TransATAC did not receive chemotherapy |
| | | | | | Women were randomized to the monotherapy arm in the original RCT ATAC trial |
| | | | | | Source of funding: Royal Marsden National Institutes of Health Biomedical Research Centre, Breast |

Likelihood for distant recurrences:
- All patients:
 - EP (Endopredict) 0-10y: 49.3 (p<0.001)
 - 0-5: 25.7 (p<0.001)
 - 5-10y: 23.6 (p<0.001)
- RS (Oncotype DX) 0-10y: 29.1 (p<0.001)
 - 0-5: 26.1 (p<0.001)
 - 5-10y: 5.6 (p=0.02)
- CTS (clinical parameters):
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-10y: 149.8 (p<0.001)</td>
<td>Cancer Now grant, Cancer Research UK grant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-5: 85.0 (p<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5-10y: 64.7 (p=0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Node-positive patients:</td>
<td>EP (Endopredict)</td>
<td>Level of evidence 2b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-10y: 14.5 (p<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-5: 7.9 (p=0.005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5-10y: 6.6 (p=0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RS (Oncotype DX)</td>
<td>0-10y: 8.0 (p=0.005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-5: 8.0 (p=0.005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5-10y: 1.0 (p=0.32)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CTS (clinical parameters):</td>
<td>0-10y: 61.6 (p<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-5: 85.0 (p<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5-10y: 64.7 (p=0.001)</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 33: Evidenztabelle zur Schlüsselfrage SF 4.5-2 Ki-67

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Petrelli et al.</td>
<td>Systematic review and Meta-analysis of prospective cohorts to explore the prognostic value of Ki-67</td>
<td>MIB-1 antibody was applied with IHC methods in n=23 studies. IHC methods were in all trials except 1 (that used TMA-bases analysis) used.</td>
<td>Primary Outcome: Overall survival (OS)</td>
<td>OS: Pooled HR for high versus low Ki-67: 1.57 (95% CI 1.33-1.87, P<0.05); the heterogeneity was high (I²=76).</td>
<td>Publication biases were considered as modest.</td>
</tr>
<tr>
<td>YEAR: 2015</td>
<td></td>
<td></td>
<td>Secondary Outcome: Disease free survival (DFS)</td>
<td>DFS: Pooled HR for high versus low Ki-67= 1.50 (95% CI 1.34-1.69); the heterogeneity was high (I²=82 %).</td>
<td>The quality of the studies entered was not appraised.</td>
</tr>
<tr>
<td>JOURNAL: Breast Cancer Research and Treatment</td>
<td>41 studies containing 64,196 individuals: 25 studies had data on OS and 27 on DFS analyses.</td>
<td></td>
<td>Length of study range: 28-188 months</td>
<td></td>
<td>More than 50% adopted Ki-67 cut-offs ≥14%. In papers published before 2009 lower thresholds were used.</td>
</tr>
<tr>
<td>[151]</td>
<td>Mean age range n.a., Patients inclusion criteria: at least 10 adult patients with resected non-metastatic BC that reported either the prognostic impact of Ki-67 evaluated with IHC or the mRNA content in the RNA extracted from frozen or formalin-fixed paraffin-embedded (FFPE) tissue</td>
<td></td>
<td></td>
<td></td>
<td>Heterogeneity between inter-study cut-offs for Ki-67;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sensitivity analysis: OS: ≥10% but <20% cut-off vs. ‘low’ n=9 studies: pooled HR= 1.28 (95% CI 1.13-1.64); I²=72%</td>
<td></td>
<td>Missing information about scoring (nuclei) system in most of the studies. Only n=11 studies gave information about the amount of nuclei;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥20% but <25% cut-off n=10 studies: pooled HR= 1.44 (95% CI 1.13-1.83); I²=58%</td>
<td></td>
<td>Source of funding: n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥25% cut-off n=5 studies: pooled HR=2.05 (95% CI 1.66-2.53); I²=0%;</td>
<td></td>
<td>Downgrade level of evidence from 1a to 1b due to significant heterogeneity between the studies and different cut-off levels used by every study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>20% cut-off vs. <20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>AUTHOR: Erber et al.</td>
<td>Subgroup analysis of the 4 multicentre RCTs (WSG EC-Doc Trial) conducted in 165 centres. Primary tumour tissue was available of 772 patients with intermediate-risk primary BC and 1-3 positive lymph nodes. Median age: 52 yrs Recruited from 2000 - 2005. Inclusion criteria of original trial: 18-65 yrs, histologically proven BC, pT1-3, M0, surgical requirements: free margins and >10 removed lymph nodes, performance status</td>
<td>EC-Doc arm receiving 4 cycles of epirubicin and cyclophosphamide followed by four cycles of docetaxel or the control arm (receiving either cyclophosphamide/epirubicin/5-fluorouracil (CEF) or cyclophosphamide/methotrexate/5-fluorouracil (CMF)</td>
<td>Primary endpoint: Disease free survival Median follow-up: 61 months</td>
<td>pooled HR= 1.31 and 1.64, respectively (both P<0.05) (data not shown) <25% cut-off n=19: HR= 1.38 (95% CI 1.15-1.65) ER+: high Ki-67 vs. low n=6: HR=1.51, 95% CI 1.25-1.81), I²=20% Ki-67 level was ≥20% in 314 (50.4%) patients</td>
<td>Analysis of node positive patients. Non-randomized subgroup selection. No significant differences regarding baseline characteristics according to the authors. Source of funding: The original study WSG EC-Doc Trial was funded by Amgen and Sanofi-Aventis. Level of evidence 2b</td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>AUTHOR: O'Shaughnessy et al. YEAR: 2015 JOURNAL: Breast Cancer Research and Treatment [153]</td>
<td>Analysis of a multicentre RCT; open-label Patients with early breast cancer were randomly allocated to receive AC->T (n=1304) or AC->XT (n=1307). Ki-67 scores were available from n=1514 patients. Median age 51 yrs Inclusion criteria: Women ≥18 and <70 years with high-risk (T1-3, N1-2, M0; or T>2 cm, N0, M0; or T>1 cm, N0, M0 and both ER- and PgR-negative), operable, histologically confirmed adenocarcinoma of the breast were eligible. Known ER, PgR, menopausal status, and</td>
<td>Eight cycles of AC->T (T dose: 100 mg/m² on day 1) or AC->XT (X dose: 825 mg/m² twice daily, days 1-14; T dose: 75 mg/m² on day 1). Central Ki-67 immunohistochemistry was performed using the SP6 monoclonal antibody and analysed by a pathologist who was blinded to all clinical data. For local Ki-67 assessment MIB1 antibody was used.</td>
<td>Primary endpoint: 5-yr-disease free survival (DFS) Secondary endpoint: Overall survival (OS) and safety Exploratory analyses: distant DFS according to centrally assessed Ki-67 status</td>
<td>Concordance between local and centrally assessed Ki-67 scores was 63%.</td>
<td>Study power was decreased (to 57%) due to lower-than-expected number of DFS events. In addition endpoint of interest (Ki-67) is also too less powered since it is no primary endpoint. No 95% CI is provided for Ki-67 results. No values of Ki-67 measurements are shown. Downgrade level of evidence from 2b to 2c due to lack of statistical power. Source of funding: The trial, third-party medical writing, (partly) costs of publication are sponsored by Hoffmann-La Roche Inc.</td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>AUTHOR: Sonnenblick et al.</td>
<td>Subgroup analysis of Breast International Group (BIG) 2-98 multicentre RCT; 2x2 design, open-labelled N=2887 patients were enrolled in the study to evaluate the efficacy of docetaxel</td>
<td>Patients were assigned to one of four treatments in a 1:1:2:2 ratio as follows: Arm 1 (sequential control): (A) doxorubicin 75 mg/m² x 4 every 3 weeks->classical CMF x3; Arm 2 (concurrent control): (AC) doxorubicin, cyclophosphamide 60/600 mg/m²x4 every 3 weeks->CMFx3; Arm 3 (sequential docetaxel): (A–T) A 75 mg/m²x3 every 3 weeks->docetaxel (T) 100 mg/m²x3 every 3 weeks->CMFx3; Arm 4 (concurrent docetaxel): (AT) AT 50/75 mg/m²x4 every 3 weeks->CMFx3</td>
<td>Primary endpoint: Disease free survival (DFS) Secondary endpoint: Comparison between sequential docetaxel arm and sequential control arm, safety, overall survival (OS), Ki-67 expression</td>
<td>N=306 (26%) (of n=1198 total) had Ki-67 levels <14% DFS (multivariate analysis): ER+ subgroup, Ki-67 ≥14% HR=1.21 (95% CI 0.94-1.57) OS (multivariate analysis): ER+ subgroup, Ki-67 ≥14% HR=1.46 (95% CI 0.94-2.06) *adjusted for age, size, tumor nodes, grade, HER2 and PR expression In absence of taxanes, 58.1% (95% CI 51.7-64.0) in the Ki-67 ≥14% group reached 10-year DFS compared to <14% 72.9% (95% CI 62.9-80.6), P<0.006</td>
<td>Central assessment of Ki-67 and objective cut-off definition (high ≥14%) is based on a study by Cheang et al. (2009). Source of funding: Sanofi Aventis, Associazione Italiana Ricerca Cancro (AIRC) Level of evidence 2c</td>
</tr>
<tr>
<td>YEAR: 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL: European Journal of Cancer [154]</td>
<td>Pooled analysis of this trial and 3 other RCTs Inclusion criteria: Women with surgical treatment (mastectomy or breast-conserving surgery) for invasive breast adenocarcinoma with ≥1 positive axillary lymph nodes of ≥8 resected nodes Exclusion criteria: metastatic breast cancer, other serious illness or medical condition</td>
<td>Ki-67 antigen was carried out on consecutive tissue sections using an</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>automated immunostaine, as antigen MIB-1 mAb to the Ki-67 antigen was used</td>
<td>And 70.5% (95% CI 64.4-75.8) in the Ki-67 ≥14% group vs 86.3% (95% CI 77.5-91.8) in the <14% group reached the 10-year overall survival endpoint, (P<0.0001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DFS (univariate analysis) in ER+: Ki-67 ≥14% HR=1.88 (95% CI 1.37-2.59)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS (Univariate analysis) in ER+: Ki-67 ≥14% HR=1.51 (95% CI 1.19-1.91)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pooled analysis in ER+ subgroups: DFS: Ki-67 high (14 or 20% cut-off) HR=0.74 (95%CI 0.64-0.86), (I^2=33.7%), no significant effect in Ki-67 low</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 34: Evidenztablelle zur Schlüsselfrage SF 4.6-1 Lymphabflussgebiet-Bestrahlung

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Budach et al.</td>
<td>Systematic review and meta-analysis of n=3 RCT (MA.20, EORTC, French trial)</td>
<td>Patients receiving additional medial supraclavicular and internal mammary lymph node irradiation to whole breast irradiation or chest wall irradiation (MS+IM)+(WBI/CWI) compared to women who underwent whole breast irradiation or chest wall irradiation only</td>
<td>Primary end point: overall survival</td>
<td>(MS+IM)+(WBI/CWI) versus (WBI/CWI) only (n=5,836, 2 studies): OS: HR=0.85 (95% CI 0.75-0.96) DFS: HR=0.85 (95% CI 0.77-0.94) DMFS: HR=0.82 (95% CI 0.73-0.92)</td>
<td>Differences between breast surgery (mastectomy or breast conserving) between studies Source of funding: n.a. Level of evidence 1a</td>
</tr>
<tr>
<td>YEAR: 2013</td>
<td></td>
<td></td>
<td>Secondary end point: disease-free survival, distant metastasis-free survival, loco-regional tumour control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL: Radiation Oncology</td>
<td>A total of n=7,170 women with BC (stage I-III) were enrolled</td>
<td>Median age: 54yrs (MA.20, EORTC) and 57yrs (French)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[155]</td>
<td>Therapy dosages (MA.20 or EORTC or French): Breast/chest wall: 50Gy/25 fractions or according to practice of the centre Medial supraclavicular nodes: 45Gy/25 fractions or 50Gy/25 fractions or according to practice of the centre Internal mammary nodes: 45Gy/25 fractions or 50Gy/25 fractions or 45Gy/20 fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 35: Evidenztabelle zur Schlüsselfrage SF 4.6-2 Teilbrustbestrahlung

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Hickey BE, Lehmann M et al.</td>
<td>Cochrane review and meta-analysis of 7 RCTs</td>
<td>Conservative surgery + partial breast irradiation(PBI)/accelerated partial breast irradiation (APBI) versus conservative surgery plus whole breast irradiation</td>
<td>Primary outcomes: local recurrence-free survival(LRFS) in the ipsilateral breast, cosmesis</td>
<td>LRFS in ipsilateral breast (n=6 trials with n=6,820 women and 89 events):
HR= 1.62 (95% CI 1.11-2.35); heterogeneity $I^2=71%$, p=0.008)</td>
<td>Substantial heterogeneity (for LRFS; $I^2=71%)$</td>
</tr>
<tr>
<td>YEAR: 2016</td>
<td>A total of n=7,586 women with early breast cancer were eligible for the analyses</td>
<td>Secondary outcomes: Overall survival, toxicity, new primary tumour in ipsilateral breast, cause-specific survival, distant metastasis-free survival, relapse-free survival, loco-regional recurrence free survival, subsequent mastectomy, compliance, costs, consumer preference, quality of life</td>
<td>Sensitivity analysis: study with high risk of bias was excluded (TARGIT): OR= 1.74 (95% CI 1.06-2.87); heterogeneity $I^2=68.6%$, p=0.07</td>
<td>Differences between duration of follow-up</td>
<td></td>
</tr>
<tr>
<td>JOURNAL: Cochrane Database of Systematic Reviews [156]</td>
<td>Inclusion criteria: RCTs without confounding, published and unpublished, systemic therapy was eligible if in exactly the same way to both groups</td>
<td></td>
<td>2.4 years’ median FU:
HR= 2.05 (95% CI 1.00-4.21) (TARGIT trial)</td>
<td>38% (n=3,451) women for LRFS analysis came from a study with high risk of bias due to short FU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: PBI used as boost following conventional EBRT</td>
<td></td>
<td>5 years’ FU:
OR=2.50 (95% CI 1.21-5.15) (4 trials)</td>
<td>Variations between trials in RT dose, techniques (interstitial brachytherapy or intra-operative), size (only one study’s fraction size was 2 Gy the rest was >2Gy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 years’ FU:
OR=1.09 (95% CI 0.63-1.89) (Polgár 2007)</td>
<td>GRADE quality of evidence for LRFS as outcome was considered low by authors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Source of funding: n.a.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Due to above mentioned methodological constraints for the primary outcome LRFS we propose to downgrade the level of evidence from 1a to 1c</td>
<td></td>
</tr>
</tbody>
</table>
OS (n=5 trials with n=6,718 women and 268 events):
HR= 0.90 (95% CI 0.74-1.09); no heterogeneity I²=40%, p=0.15

Acute toxicity:
Skin (2 trial, n=608 women and 150 events): OR= 0.04 (95% CI 0.02-0.09); little evidence of heterogeneity I²=27%, p=0.24.

No differences in infection requiring intravenous antibiotics or surgical intervention (p=0.292) and skin breakdown or delayed healing in TARGIT trial (p=0.155).

Seromas needing greater than three aspirations were more frequent with APBI in TARGIT trial (p=0.012).

Late toxicity:
Skin (2 trials, 608 women and 2 events): OR= 0.21 (95% CI 0.01-4.39)

No differences in late radiotherapy skin

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS (n=5 trials with n=6,718 women and 268 events):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HR= 0.90 (95% CI 0.74-1.09); no heterogeneity I²=40%, p=0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acute toxicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skin (2 trial, n=608 women and 150 events): OR= 0.04 (95% CI 0.02-0.09); little evidence of heterogeneity I²=27%, p=0.24.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No differences in infection requiring intravenous antibiotics or surgical intervention (p=0.292) and skin breakdown or delayed healing in TARGIT trial (p=0.155).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seromas needing greater than three aspirations were more frequent with APBI in TARGIT trial (p=0.012).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Late toxicity:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Skin (2 trials, 608 women and 2 events): OR= 0.21 (95% CI 0.01-4.39)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No differences in late radiotherapy skin</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>toxicity in GEC-ESTRO (p=0.08).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Breast pain (1 study, 10 events, 766 women): OR = 2.17 (95% CI 0.56-8.44); ELIOT trial reported no difference in breast pain (data not shown); GEC-ESTRO reported reduced breast pain with PBI (p=0.04).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Telangiectasia (1 study, 766 women, 28 events): OR = 26.56 (95% CI 3.59-196.51).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fat necrosis (3 trial, 1,319 women, 100 events): OR = 1.58 (95% CI 1.02-2.43); little evidence of heterogeneity I²=49%, p=0.14.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subcutaneous fibrosis (1 study, 766 women, 59 events): OR = 6.58 (95% CI 3.08-14.06).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Loco-regional recurrence-free survival (2 trials, n=3,553 women, 48 events): HR = 1.80 (95% CI 1.00-3.25).</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>AUTHOR: Kong et al. YEAR: 2014 JOURNAL: The Breast Journal [157]</td>
<td>Systematic review and meta-analysis of 11 studies (4 RCTs, 7 retrospective cohort studies) A total of n=7,097 women with breast cancer were included in the analysis Mean age range: 52-65 yrs Inclusion criteria: >= 6 months treatment duration, report of treatment outcome Exclusion criteria: comparative trials compared two different partial irradiation techniques or two different doses or procedures of the same radiation technique; comparative trials compared dose parameters, acute toxicity, or complications of the two irradiation techniques; single arm studies, meeting</td>
<td>Accelerated partial breast irradiation compared to whole breast irradiation</td>
<td>Primary outcome: Local recurrence, Overall survival, disease-free survival Follow-up range: 5months-12yrs</td>
<td>Loco-regional Recurrence: (10 studies, n=4,995 women, 209 events): OR= 1.54 (95% CI 1.15-2.06), no heterogeneity I²=0%, p=0.565 Overall survival (8 studies, n=n.a, events n.a.): OR=0.88 (95% CI 0.73-1.06) Disease-free survival (6 studies, n= n.a., n.a. events): OR=1.10 (95% CI 0.81-1.51) Sensitivity analysis: after excluding 2 trial which did not use principal techniques to deliver APBI LR (8 studies, n=4,113 women, 87 events): OR=1.08 (95% CI 0.69-1.67) OS (6 studies, n= n.a., events n.a.): OR=0.78 (95% CI 0.61-1.00) Subgroup analyses on loco-regional recurrences: Women <60yrs:</td>
<td>Publication dates were from 1993 to 2012 Trials with small sample sizes included Different study designs included in meta-analysis Different irradiation technique between trials Follow-up duration not considered Source of funding: Science and Technology Project of Shandong Province Due to above mentioned constraints we propose to downgrade the level of evidence from 2a to 2b</td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019
13.4. Evidenztabellen

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>abstracts, and trail designs’</td>
<td></td>
<td></td>
<td>OR= 1.66 (95% CI 1.18-2.34); no heterogeneity I²=20.4%, p=0.280.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OR=1.27 (95% CI 0.73-2.21); I²=0%, p=0.881</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unknown (percentage of negative margin status: OR=1.97 (95% CI 1.29-3.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><90: 1.21 (95% CI 0.37-3.97)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>=90 &<100: OR= 1.18 (95% CI 0.61-2.29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100: 1.26 (95% CI 0.71-2.24)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tumour size (percentage of >2cm): Unknown: OR=2.91 (95% CI 0.87-9.65)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><= 10: OR=1.09 (95% CI 0.53-2.24)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10 & <=20: 1.07 (95% CI 0.62-1.85)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>20: 1.97 (95% CI 1.29-3.01)</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 36: Evidenztabelle zur Schlüsselfrage 4.6-3 Hypofraktionierung

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Hickey BE, James ML et al.</td>
<td>Cochrane review and meta-analysis of n=9 RCTs</td>
<td>Postoperative radiation to the breast alone: altered fraction size (greater than 2 Gy per fraction) versus conventional (1.8 to 2 Gy per fraction) altered regimens: 39 Gy in 13 fractions, 42.5 Gy in 13 fractions, 41.6 Gy in 13 fractions and 40 Gy in 15 fractions</td>
<td>Primary outcomes: Local recurrence-free survival, appearance or cosmesis of the treated breast Secondary outcomes: Overall survival, toxicity (acute and late), breast cancer-specific survival, relapse-free survival, quality of life</td>
<td>Local recurrence (6 studies): 442 events in n=8,050 Patients: observed events at 3.5yrs: HR=0.18 (95% CI 0.03-1.13), I²=40%, p=0.20 observed events at 10yrs: HR=0.94 (95% CI 0.77-1.15); i.e. 1.4% fewer local recurrences (95% CI 1.6% fewer – 1.0% more) i.e. non-inferiority of altered fractionation size: no heterogeneity I²=0%, p=0.54 Overall survival (3 studies): 991 deaths in 5,685 women: HR= 0.91 (95% CI 0.80-1.03); 1.3% fewer deaths (95% CI 3.1% fewer – 0.5% more) i.e. non-inferiority of altered fractionation size: no heterogeneity I²=19%, p=0.29 Sensitivity analysis: exclusion of 1 study (Whelan 2002):</td>
<td>Most women were treated with breast conserving therapy (n=7,675 of n=8,188) The authors deemed (based on expert opinion of the authors) a Hazard Ratio of 0.75 or less and 1.25 or more to be clinically meaningful 5% (and 2.5% for LR-FS, BC-SS and OS) was chosen for minimal clinically important difference, Subgroup analyses revealed no difference in dose of experimental arm (<50 Gy vs >=50 Gy) or length of follow up (4.2 vs 9.3 vs 12 yrs) Non-inferiority: if the upper limit of the confidence interval indicated the intervention was less than 2.5% worse than the control, the authors concluded non-inferiority Source of funding: n.a. Level of evidence 1a</td>
</tr>
<tr>
<td>YEAR: 2016</td>
<td>A total of n=8,228 women with early BC (and negative pathological margins) were included Median age: n.a. Inclusion criteria: RCT, unconfounded comparison, published and unpublished data</td>
<td>Conventional: 50 Gy in 25 fractions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL: Cochrane Database of Systematic Reviews [Beitrag Methodenteam] [158]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
</tbody>
</table>

HR=0.90 (95% CI 0.78-1.04), heterogeneity I²=58%, p=0.12

Acute skin toxicity (2 studies):
93 events occurred in 357 women: RR=0.32 (95% CI 0.22-0.45); heterogeneity I²=78%, p=0.03

Late skin toxicity (1 study):
12-yrs (39 events in 455 women): RR=1.09 (95% CI 0.60-1.99), 3 more per 1000 treated women with altered fraction (95% CI 15 fewer to 36 more)
No women had Grade IV

Late subcutaneous toxicity (1-2 studies):
5-yrs (n=806 participants, 1 study): RR=1.07 (95% CI 0.85-1.35)
10-yrs (n=4,324 participants, 2 studies): RR=0.89 (95% CI 0.78-1.02)
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Telangiectasia (3 studies):</td>
<td>190 events occurred in 4,632 women: RR= 0.68 (95% CI 0.52-0.91), 16 fewer women in altered fraction arm developed Telangiectasia (95% CI 4 fewer – 23 fewer), no heterogeneity I²=0%, p=0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Breast shrinkage (2 studies):</td>
<td>950 events occurred in 3,869 women: RR=0.89 (95% CI 0.79-1.00), 26 fewer women developed breast shrinkage (95% CI 0 fewer – 49 fewer), no heterogeneity I²=0%, p=0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ischaemic heart disease (2 studies):</td>
<td>18 events occurred in 4,451 women: RR=0.71 (95% CI 0.28-1.79), 1 fewer woman developed ischaemic heart disease (95% CI 3 fewer to 4 more), no heterogeneity I²=0%, p=0.80</td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>--</td>
</tr>
</tbody>
</table>

Rib fractures (3 studies):
8 events occurred in 5,685 women: RR=0.87 (95% CI 0.25-3.10), no fewer women developed rib fractured with altered fraction size, no heterogeneity I²=0%, p=0.78

Relapse-free survival (3 studies):
870 relapses occurred in 5,685 women HR=0.93 (95% CI 0.82-1.05), 14 fewer relapses per 1000 women (95% CI 36 fewer to 10 more), heterogeneity I²=62%, p=0.07

Sensitivity analysis: exclusion of 1 study (Whelan 2002):
HR=0.90 (95% CI 0.78-1.03), heterogeneity I²=74%, p=0.05

Quality of life (trial-specific instruments):
Shaitelman 2015: less patient-reported(p<0.001) as well as physician-
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>reported (p=0.009) fatigue, no significant differences in: physical-wellbeing, functional well-being, emotional well-being, social well-being, FACT-G total score, breast cancer concerns, FACT-B total score</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 37: Evidenztabelle zur Schlüsselfrage SF 4.7.5-1 Trastuzumab - Tumorgröße < 1cm

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Zhou et al.</td>
<td>Systematic review and meta-analysis</td>
<td>Adjuvant chemotherapy and trastuzumab versus chemotherapy alone</td>
<td>Primary endpoint: disease-free survival</td>
<td>DFS: Pooled RR=0.32 (95% CI 0.19-0.55); I²= 48.6%, p= 0.12</td>
<td>Duration and schedule of trastuzumab was not considered</td>
</tr>
<tr>
<td>JOURNAL: Plos One</td>
<td>N=8 retrospective, non-randomized, controlled trials</td>
<td></td>
<td>Secondary endpoint: Overall survival</td>
<td>OS: Pooled RR = 0.63 (95% CI 0.08-4.92); I²=0%; p=0.775</td>
<td>Retrospective and non-randomized studies</td>
</tr>
<tr>
<td></td>
<td>For the subgroup analysis of pT1a-bN0M0 patients n=4 studies were eligible</td>
<td></td>
<td></td>
<td></td>
<td>Level of evidence 2a</td>
</tr>
</tbody>
</table>
Tabelle 38: Evidenztabelle zur Schlüsselfrage SF 4.7.5- 2 Trastuzumab - Dauer

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Moja et al.</td>
<td>Cochrane Review and meta-analysis of RCTs</td>
<td>Trastuzumab with/after adjuvant/neoadjuvant chemotherapy compared to adjuvant chemotherapy without trastuzumab</td>
<td>Primary outcomes: Overall survival, disease-free survival</td>
<td>OS: <=6 months (n=273 patients and 33 death occurred): HR= 0.55 (95% CI 0.27-1.11); Test for heterogeneity between studies: not applicable; p=0.01</td>
<td>Publication bias due to never published data on 2,782 patients (from HERA and N9831 studies)</td>
</tr>
<tr>
<td>JOURNAL: Cochrane Database of Systematic Reviews</td>
<td>A total 11,991 women with HER2-positive, operable BC were included in the analysis</td>
<td>Secondary Outcome: Quality of Life</td>
<td>>6 months (n=9,662 patients and 622 deaths occurred): HR= 0.67 (95% CI 0.57-0.80); I²=9%; p<0.00001</td>
<td>Small number of studies for subgroup analysis</td>
<td></td>
</tr>
<tr>
<td>YEAR: 2012</td>
<td>Median age: 49 yrs</td>
<td>Median follow-up: 18-65 months</td>
<td>No heterogeneity between subgroups for OS outcome: I²=0%; p=0.58</td>
<td>Only one study had data on QoL</td>
<td></td>
</tr>
<tr>
<td>[160]</td>
<td></td>
<td></td>
<td></td>
<td>Small number of patients in studies with trastuzumab duration <= 6 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Studies with a duration >6 months gave trastuzumab for 1 year (see original studies or study description in the Cochrane Review)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Of n=8 eligible studies n=6 focused on the adjuvant setting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Source of funding: n.a.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Due to results from subgroup analyses we propose to downgrade the level of evidence from 1a to 1b</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
</tbody>
</table>

No Heterogeneity between subgroups for DFS outcome: I² = 28%; p < 0.24
Tabelle 39: Evidenztabelle zur Schlüsselfrage SF 5.3-1 Lokoregionales Rezidiv

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Aebi et al.</td>
<td>Multi-centre randomised clinical trial</td>
<td>Randomised allocation to chemotherapy versus no chemotherapy; treating physician selected chemotherapy Radiotherapy was recommended for all patients and endocrine therapy was recommended for ER and/or PgR-positive recurrent tumours</td>
<td>Primary endpoint: Disease-free survival Secondary endpoint: Overall survival</td>
<td>5-year DFS: Rate: 69% chemo group versus 57% in no chemo group HR=0.59 (95% CI 0.35-0.99) 5-year OS: Rate: 88% in chemo group versus 75% in no chemo group HR= 0.41 (95% CI 0.19-0.89)</td>
<td>No HER2 testing required Broad 95% Confidence Intervals Study enrolment didn’t power of 80% Short follow-up period (4.9 yrs) Dropout rate not given Distant recurrences included in end point definition (DFS) Due to methodological constraints we propose to downgrade the level of evidence from 1b to 2a</td>
</tr>
<tr>
<td>YEAR: 2014</td>
<td>N=162 patients with isolated loco-regional recurrences after unilateral BC (mastectomy or lumpectomy) Median age: 56 yrs Inclusion criteria: no metastatic disease, no prior malignancy other than BC, macroscopical clear margins after surgery for ILRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL: Lancet Oncology [161]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019
Tabelle 40: Evidenztabelle zur Schlüsselfrage SF 5.4-2 Lebermetastasen

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
</table>
| AUTHOR: Mariani et al.
YEAR: 2013
JOURNAL: European Journal of Surgical Oncology
[162] | Retrospective cohort study with individuals of one medical institution
N=102 patients in the matched analysis and n=100 in the analysis of all surgical treated patients of the clinical register
Inclusion criteria: ≤4 resectable liver metastases, stable disease, to therapy responding disease, performance status 0-1, therapy-controlled bone metastases were no exclusion criteria | Surgical resection of liver metastases versus drug therapy | Survival rate | Survival rate at 36 months of matched cohort with no liver surgery: 50.9% (95% CI 38.0-68.2) versus cohort with surgery 80.7% (95% CI 69.6-93.7); significant log-rank test | Many lost to follow-up shown in Kaplan-Meier plot
Retrospective design, small sample size
No specification of death cause
Source of funding: n.a.
Level of evidence 4 |
| AUTHOR: Li et al.
YEAR: 2005
JOURNAL: World Journal of Gastroenterology
[163]
[Beitrag Methodenteam:] | Retrospective cohort study with individuals of one medical institution
Total N=48 who underwent TACE (n=28) or received chemotherapy (n=20) | Patients underwent TACE or received chemotherapy | Survival rates | 1-, 2- and 3-year survival rates: under TACE were: 63.0%, 30.4% and 13.0% versus 33.9%, 11.39%, and 0% under chemotherapy; not significant since Kaplan-Meier survival curves cross | No inclusion or exclusion criteria mentioned
No data for 3-year survival on chemotherapy, no data on death causes
Source of funding: n.a.
Level of evidence 4 |
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>identifiziert durch Referenzliste</td>
<td>Retrospective cohort study</td>
<td>Patients underwent laparoscopic radiofrequency ablation or received systemic therapy alone</td>
<td>Disease-free survival</td>
<td>RFA group: Median disease free survival: 9 months, Overall survival 48 months from diagnosis of liver metastases, 5-year actuarial survival rate: 29%</td>
<td>Small sample size, retrospective design</td>
</tr>
<tr>
<td>AUTHOR: Tasci et al.</td>
<td>N=56 individuals were enrolled; patients got matched for size and number of liver tumour, between first cancer and liver metastases</td>
<td></td>
<td>Overall survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR: 2013</td>
<td>Inclusion criteria: Liver metastases from breast cancer, no or minimal extrahepatic disease, <20% liver volume involvement by tumour, no evidence of biliary dilatation CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL: HPB (Oxford) [164]</td>
<td>Retrospective cohort study</td>
<td>Patients underwent laparoscopic radiofrequency ablation or received systemic therapy alone</td>
<td>Disease-free survival</td>
<td>RFA group: Median disease free survival: 9 months, Overall survival 48 months from diagnosis of liver metastases, 5-year actuarial survival rate: 29%</td>
<td>Small sample size, retrospective design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Overall survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>More (n=13) HER2(+) patients in drug therapy group compared to RAF group (n=6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Source of funding: n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Level of evidence 4</td>
</tr>
</tbody>
</table>
Tabelle 41: Evidenztabelle zur Schlüsselfrage SF 5.4-3 Chemoregime

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
</table>
| AUTHOR: Xu et al. YEAR: 2013 JOURNAL: The Breast Journal [165] | Systematic review and meta-analysis of 20 RCTs | Vinorelbine-combined chemotherapy compared to other regimes | Primary end point: Overall survival (OS), Progression-free survival (PFS) | **PFS:** OR=1.45 (p=0.005) **OS:** OR=0.979 (p=0.80) | Heterogeneity was not assessed
| | A subgroup of n= (3 RCTs) with the intervention of interest was analysed | | Secondary end point: response rate (=sum of partial and complete response rates, and toxicity) | | Subgroup analyses
| | Median/mean age: n.a. Exclusion criteria: noncontrolled design, phase I study | | Median/mean follow up: n.a. | | No 95% CI presented
| | | | | | No information about follow up time
| | | | | | Source of funding: Shanghai Municipal Natural Science Foundation, Shanghai Pujiang Program, National Natural Science Foundation of China, Leading Academic Discipline Project of the Shanghai Municipal Education Committee
| | | | | | Due to subgroup analyses and methodological constraints we propose to downgrade the level of evidence from 1b to 1c |

AUTHOR: Dear et al. YEAR: 2013 JOURNAL: Cochrane Database of Systematic Reviews

<table>
<thead>
<tr>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
</table>
| Cochrane Review and meta-analysis of 12 RCTs | Combination chemotherapy versus same drugs given sequentially | Primary end points: Overall survival, progression-free survival | **OS (12 studies):** HR=1.04 (95% CI 0.93-1.16); I²=24%, p=0.23 **PFS (11 studies):** HR=1.11 (95% CI 0.99-1.25); I²=21%, p=0.27 | Homogeneity between studies QoL was measured with different scale in the studies
<p>| A total of n=2,317 women with metastatic BC were included | | Secondary end points: overall response rate, | | No information about follow up time |</p>
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
</table>
| [166] | Pooled mean/median age: n.a.
Inclusion criteria: English language, RCT | | quality of life, toxicities
Pooled mean/median follow-up: n.a. | QoL (3 studies):
1) Emotional functioning was better in the combination arm (score differences 3.53 (95% CI 6.99 to -0.06), no significant differences in the seven symptom scales or for financial impact
2) no difference in baseline subscale scores during treatment, combination arm statistically better scores in: role functioning, global health (p<0.05)
3) No significant differences between treatment arms on any subscale | Source of funding: n.a.
Level of evidence 1a |
| AUTHOR: Ghersi et al.
YEAR: 2015
JOURNAL: Cochrane Database of Systematic Reviews | Cochrane review and meta-analysis of 28 RCTs
A total of 6,871 women with metastatic BC was included | Taxanes compared to non-taxan-containing regimes | Primary end points:
Overall survival, progression-free survival
Secondary end points:
Time to treatment failure, Objective tumour response rate, Toxicity, Health related quality of life
Pooled median follow-up: n.a. | OS:
Regimen A plus taxane versus regimen A (2 studies):
HR=1.00 (95% CI 0.84-1.18); ²²=0%, p=0.91
Single taxane versus non-anthracycline combination (8 studies):
HR=0.94 (95% CI 0.84-1.06); ²²=52%, p=0.04
After exclusion of 3 studies with suboptimal | Subgroup analyses between single agent and combined chemotherapy
No information about follow up time
Heterogeneity between studies
Source of funding: n.a.
Due to heterogeneity between studies we propose to |
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>possible to distinguish between those)</td>
<td>Comparison of doublet-agent and single agent chemotherapy as salvage therapy in metastatic BC ((GEM + NVB)v NVB or (IXA + CAP) v CAP in different dose and application schemes)</td>
<td>Primary end point: Overall survival Secondary end point: progression-free survival, overall response rate</td>
<td>OS: HR=0.96 (95% CI 0.87-1.05); no heterogeneity: I²=0% (p=0.67) PFS: HR=0.79 (95% CI 0.72-0.86); heterogeneity between studies I²=54%; p=0.091 Intention-to-treat analysis Heterogeneity between studies in analysis of secondary end points Differences between studies when therapy was given (first-, second-, third-line) No information about follow up time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AUTHOR: Qi et al. YEAR: 2013 JOURNAL: The Breast [168] Systematic review and meta-analysis of n=4 RCTs A total of n=2,373 patients with metastatic BC and pre-treated with an anthracycline and a taxane were included in the analysis Age range: 52-60yrs
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inclusion criteria: English language publications, trials comparing doublet cytotoxic agents with single agent, patients were pathologically confirmed of breast cancer and previously treated with an anthracycline and a taxane, phase III RCT, sufficient data for extraction</td>
<td>PFS subgroup analysis: Capecitabine-based (2 trials): HR=0.77 (95% CI 0.70-0.86) Gemcitabine-based: HR=0.85 (95%CI 0.70-1.03)</td>
<td>ORR: RR=1.47 (95% CI 1.13-1.91); heterogeneity τ²=3.7%; p=0.041 ORR subgroup analysis: Capecitabine-based: RR=1.65 (95% CI 1.06-1.91) Gemcitabine-based: RR=1.23 (95% CI 0.89-1.70)</td>
<td>Funnel plot analysis revealed no publication bias Source of funding: National Natural Science Foundation of China, Science and Technology Commission of Shanghai Due to heterogeneity between studies we propose to downgrade the level of evidence from 1a to 1b</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 42: Evidenztabelle zur Schlüsselfrage SF 6.4-1 zum Thema Ultraschall

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Wojcinski et al.</td>
<td>JOURNAL: Ultrasound in Medicine & Biology YEAR: 2011 [169]</td>
<td>Prospective, single-institutional Before-After study</td>
<td>Routine follow-up: Physical examination and mammogram according to AGO Breast Commission guidelines; symptomatic patients received additional US</td>
<td>Routine follow-up in n=735: Physical exam or mammogram: Of n=245 patients with abnormal findings n=66 biopsies were taken; n=27 malignant (3.7%)</td>
<td>No blinding of examiner</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: History of unilateral BC, interval of ≥6 months since last BC treatment (except endocrine)</td>
<td>Study follow-up: After routine follow-up asymptomatic patients received US on the same day</td>
<td>US was performed by DEGUM level I certified gynaecologist with linear probe (and 6-13MHz) or long linear probe (and 5-10MHz)</td>
<td>Study follow-up: US: Of n=490 asymptomatic patients n=21 (2.9%) additional biopsies were taken, N=6 malignant (0.8%)</td>
<td>Findings were histopathological assured Source of funding: n.a. Due to methodological constraints we propose a level of evidence of 2c instead of 2b</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: Previously diagnosed recurrence, brain metastases, psychological disorder, ongoing cancer therapy</td>
<td></td>
<td>Frequency of occult BC recurrence, psychosocial aspects</td>
<td></td>
<td>Small sample size</td>
</tr>
<tr>
<td>AUTHOR: Riebe et al.</td>
<td>JOURNAL: Ultrasound in Med YEAR: 2007 [170]</td>
<td>Retrospective single-institution cross-sectional study with n=27 patients, who underwent breast-conserving therapy and radiation</td>
<td>Palpation, mammography and US alone or in combination; Bi-RADS was used for classification of mammograms; US fulfilled requirements of DEGUM device list</td>
<td>Sensitivity, specificity, PPV, NPV, efficiency* Palpation/mammogram: Sensitivity: 81.8%(9/11) specificity: 6.2% (1/16); PPV: 37.5; NPV: 33.3%, efficiency: 37%</td>
<td>Findings were histopathological assured US examiners were not blinded to mammogram and palpation results</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Beitrag aus Referenzliste identifiziert]</td>
<td>At least one diagnostic technique raised suspicion for recurrent disease</td>
<td></td>
<td></td>
<td>Palpation/mammogram/US: Sensitivity: 100% (11/11); PPV: 41%; Efficiency: 41%</td>
<td>Source of funding: n.a. Due to methodological constraints we propose to downgrade level of evidence from 2b to 3a</td>
</tr>
</tbody>
</table>
Tabelle 43: Evidenztabelle zur Schlüsselfrage Schwanger 1 zum Thema Mammakarzinom während der Schwangerschaft (SF Schwanger 1)

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
</table>
| AUTHOR: Azim et al.
YEAR: 2010
JOURNAL: Cancer Treatment Reviews [171] | Systematic Review of case series
N=56 studies, that reported on BC were included
Inclusion criteria: English abstracts/full-texts, clear diagnosis of pregnancy associated cancer, name of the used agents, gestational age at which the agent was administered, outcome of pregnancy, reports describing cancer patients who got pregnant unintentionally during therapy
Exclusion criteria: elective abortion | The use of chemotherapy in the (a) neoadjuvant/adjuvant setting
(b) in the metastatic setting
(c) HER2/neu targeted agents in pregnancy
(d) Hormonal treatments during pregnancy were analysed | Disease-free survival, overall survival, adverse events | Neoadjuvant/adjuvant setting: n=2 prospective studies/case series with 77 cases
Disease-free survival: 70%
Overall survival: 77-85%
Preterm pregnancies: n=3
Congenital anomalies: 1 Down syndrome, 1 uretral reflux, 1 club foot, 1 polycystic kidney | Few studies with more than 15 cases
Source of funding: n.a.
Level of evidence 4 |
| AUTHOR: Zagouri et al.
YEAR: 2013
JOURNAL: Clinical Breast Cancer [172] | Systematic Review of case series
N=16 articles were included
Mean age: 34.6 yrs | Taxanes for the treatment of BC during pregnancy | Overall survival, progression-free survival, adverse events | OS and PFS reported in one study: >15mo
In 76.7% (23 of 30) cases a healthy neonate was born
Remaining cases of:
Follow-up outcome was in some cases confirmed by the parents | Source of funding: n.a.
Level of evidence 4 |
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Zagouri et al.</td>
<td>Inclusion criteria: studies that examined the efficacy and safety of taxanes, (during pregnancy) in patients with breast cancer and reported the relevant frequencies</td>
<td>Trastuzumab for the treatment of BC during pregnancy</td>
<td>Overall survival, progression-free survival, adverse events</td>
<td>OS: 8.25mo-129.5mo</td>
<td>In 55.6% of the cases trastuzumab was administered in the metastatic setting</td>
</tr>
<tr>
<td>YEAR: 2013</td>
<td>Systematic review and meta-analysis</td>
<td></td>
<td></td>
<td>PFS: >1mo-24mo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N=18 studies were eligible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Dystrophic and premature
- Mild hydrocephalus
- Bacterial sepsis
- Hyperbilirubinemia
- Apnea of prematurity, respiratory distress syndrome, and gastroesophageal reflux

Followed up children: 90% (27 of 30) children were healthy
In the remaining cases: recurrent otitis media
Immunoglobulin A deficiency and mild constipation
Delayed speech
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOURNAL: Breast Cancer Research and Treatment [172]</td>
<td>Median age: 32.3 yrs</td>
<td>Median follow-up: 26.6 mo</td>
<td>In 52.6% (10 of 19) of the cases a healthy neonate was born</td>
<td>Adverse events: mild transient tachypnoea infant respiratory distress syndrome lung disease and renal failure creatinine elevation and respiratory distress syndrome multiple prematurity-related problems respiratory failure, strong capillary link syndrome, persisting infections and necrotizing enterocolitis severe pulmonary hypoplasia and atelectasis</td>
<td>Source of funding: n.a. Level of evidence 4</td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bacterial sepsis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At median follow up of 9mo all cases</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>healthy at birth (10 of 19) were</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>healthy;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 of 9 children facing problems at</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>birth were dead after a range of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>birth-5.25mo</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 44: Evidenztabelle zur Schlüsselfrage Schwanger 2 zum Thema Schwangerschaft nach Mammakarzinom (SF Schwanger 2)

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Azim et al.</td>
<td>Systematic review and meta-analysis of case control and cohort studies</td>
<td>Women who got pregnant after BC diagnosis were compared to women who didn’t</td>
<td>Overall survival</td>
<td>Overall survival (all studies): HR=0.59 (95% CI 0.5-0.7); I²=43.1%, p=0.04</td>
<td>Studies published between 1970 and 2009</td>
</tr>
<tr>
<td>YEAR: 2011</td>
<td></td>
<td></td>
<td>Follow up range: 5-30+ years</td>
<td></td>
<td>A total of n=1,244 case subjects were included in the analysis</td>
</tr>
<tr>
<td>JOURNAL: European Journal of Cancer [173]</td>
<td>N=14 studies were included in the analysis</td>
<td></td>
<td></td>
<td></td>
<td>Different definitions of pregnancy between studies (e.g. live birth/full-term/spontaneous abortion/induced abortion)</td>
</tr>
<tr>
<td></td>
<td>Age at BC diagnosis: 16-<45 (cases) 22-52 (controls)</td>
<td></td>
<td></td>
<td></td>
<td>Some studies are the same as used in the meta-analysis of Valachis et al.</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: no full-text available</td>
<td></td>
<td></td>
<td></td>
<td>Source of funding: n.a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Due to heterogeneity between the studies we propose to downgrade the level of evidence from 3a to 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sample size of the studies varied from 18 to 371 case subjects (with subsequent pregnancy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Some studies are the same as used in the meta-analysis of Azim et al.</td>
</tr>
<tr>
<td>AUTHOR: Valachis et al.</td>
<td>Systematic review and meta-analysis of n=9 retrospective cohort and case-control studies</td>
<td>Women who got pregnant more than 10 months after BC diagnosis were compared to women who didn’t</td>
<td>Overall survival</td>
<td>Overall survival: HR=0.57 (95% CI 0.48-0.68); I²=65%, p=0.003</td>
<td></td>
</tr>
<tr>
<td>YEAR: 2011</td>
<td></td>
<td></td>
<td>Follow up range: 60-120mo (few studies didn’t report on that)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOURNAL: Obestrical And Gynecological Survey [174]</td>
<td>A total of 1,097 women with subsequent pregnancy were eligible for the meta-analysis on pregnancy and survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Design and participants: Author, Year, Journal, And Id. Intervention: Women who got pregnant after BC diagnosis were compared to women who didn’t. Outcomes: Overall survival. Results: Overall survival (all studies): HR=0.59 (95% CI 0.5-0.7); I²=43.1%, p=0.04. Quality and comment, source of funding: Studies published between 1970 and 2009. A total of n=1,244 case subjects were included in the analysis. Different definitions of pregnancy between studies (e.g. live birth/full-term/spontaneous abortion/induced abortion). Some studies are the same as used in the meta-analysis of Valachis et al. Source of funding: n.a. Due to heterogeneity between the studies we propose to downgrade the level of evidence from 3a to 4. Sample size of the studies varied from 18 to 371 case subjects (with subsequent pregnancy). Some studies are the same as used in the meta-analysis of Azim et al.
Source

Design and participants

- Inclusion criteria: separate analysis of low risk patients, hazard ratio for overall survival, patients younger than 45 years and who became pregnant more than 10 months after BC diagnosis, addresses healthy mother bias

- Design: Multi-centre, retrospective, 1:3 matched cohort study

- Participants: N=333 pregnant and n=873 non-pregnant women were eligible

- Median age: 31 (pregnant group) and 34 (non-pregnant group)

- Inclusion criteria: <50 years, primary non-

Intervention

- Women any time after BC who got pregnant versus women after BC who did not

- Women were matched for: ER status, nodal status, adjuvant therapy, disease-free interval at least equal to the time elapsing between BC diagnosis and date of conception

Outcomes

- Primary end point: Disease-free survival of pregnant and non-pregnant women with ER-positive disease

- Secondary end point: disease-free survival and overall survival in the ER-negative population and overall population

Results

- Intervals of subsequent pregnancy:
 - 10 months from BC diagnosis to conception (4 studies)
 - 1 months or 6 months from completion of BC treatment to conception (2 studies)
 - The rest didn’t report on that

- Disease free survival:
 - ER-positive population: HR=0.91 (95% CI 0.67-1.24)
 - ER-negative population: HR=0.75 (95% CI 0.51-1.08)

- All patients: HR=0.84 (95% CI 0.66-1.06)

- Overall survival:

Quality and comment, source of funding

- Different definitions of pregnancy between studies (live birth/full-term/spontaneous abortion/induced abortion)

- Retrospective studies

- Recall bias might have occurred

- Wide time range of studies included in the meta-analysis (1970-2008)

- Wide range of time when cases became pregnant after BC diagnosis

- Source of funding: n.a.

- Level of evidence 3a

- Non-pregnant women had to have a disease free interval equal of longer than the interval between BC and conception of the pregnant women

- No information on assisted reproductive technology

- Non-pregnancy was assured by phone contact or national register files
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Bell et al.</td>
<td>Cohort study (Bupa Study)</td>
<td>Comparing women who got pregnant after BC diagnosis to women who did not get pregnant</td>
<td>Endpoints: Evidence of active disease, deaths within the study</td>
<td>All patients: HR=0.72 (95% CI 0.54-0.97) Log-rank test: P=0.11</td>
<td>Median time from BC diagnosis to conception: 2.4 yrs</td>
</tr>
<tr>
<td>YEAR: 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Source of funding: National Institutes of Health</td>
</tr>
<tr>
<td>JOURNAL: The Breast [176]</td>
<td>A total of n=1,683 women with an first episode of invasive BC between 2004 and 2006 were enrolled</td>
<td></td>
<td></td>
<td></td>
<td>Level of evidence 2b</td>
</tr>
<tr>
<td></td>
<td>Median age: Pregnant after BC diagnosis: 33.4yrs Not pregnant after BC diagnosis: 36.7yrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: younger than 48 yrs at diagnosis (for pregnancy associated BC), <40 and no more than one child before BC diagnosis (for the pregnancy after BC analysis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: n.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Source of funding: National Institutes of Health</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Small sample size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n=10 got lost to follow up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data from a self-answered questionnaire</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Individual pathological data were provided by the Victorian Cancer Registry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No definition of outcomes (e. g. death cause)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No information if inclusion criteria was just women of women with wish of child</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Women needed to complete an enrolment questionnaire within 12 months of diagnosis and then an annual follow-up questionnaire for 5 years</td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>AUTHOR: Córdoba et al.</td>
<td>Retrospective cohort study from a single hospital A total of n=115 women diagnosed with BC (1995-2002) were included Median age at diagnosis: Pregnancy group: 31.5yrs Non-pregnancy group: 22</td>
<td>Comparing women, who got pregnant after BC and those who did not get pregnant</td>
<td>Survival analysis Mean follow-up: 6 yrs</td>
<td>Pregnancy group: n=18 women Non-pregnancy group: n=97</td>
<td>Subgroup analysis with women who got pregnant or not after BC No data on regime, assisted conception, BRCA status Small sample size Many censored events in Kaplan-Meier curve; no discussion of the reasons of censoring No information if included women had a wish for a child</td>
</tr>
<tr>
<td>YEAR: 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Source of funding: UPA Health Foundation, National Health and Medical Research Council of Australia, Novartis Oncology Australia, the L.E.W. Carty Trust, the Jack and Robert Smorgon Families Foundation, Connie and Craig Kimberley and Roy Morgan Research</td>
</tr>
<tr>
<td>JOURNAL: The Breast [177]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Level of evidence 4</td>
</tr>
</tbody>
</table>

AUTHOR: Córdoba et al.
YEAR: 2012
JOURNAL: The Breast [177]
Design and participants: Retrospective cohort study from a single hospital. A total of n=115 women diagnosed with BC (1995-2002) were included. Median age at diagnosis: Pregnancy group: 31.5yrs, Non-pregnancy group: 22.
Intervention: Comparing women, who got pregnant after BC and those who did not get pregnant.
Outcomes: Survival analysis Mean follow-up: 6 yrs.
Results: Pregnancy group: n=18 women, Non-pregnancy group: n=97.
Quality and comment, source of funding: Subgroup analysis with women who got pregnant or not after BC. No data on regime, assisted conception, BRCA status. Small sample size. Many censored events in Kaplan-Meier curve; no discussion of the reasons of censoring. No information if included women had a wish for a child. Source of funding: UPA Health Foundation, National Health and Medical Research Council of Australia, Novartis Oncology Australia, the L.E.W. Carty Trust, the Jack and Robert Smorgon Families Foundation, Connie and Craig Kimberley and Roy Morgan Research.
Level of evidence 4
Source
AUTHOR: Gorman et al.
YEAR: 2010
JOURNAL: Psycho-Oncology [178]

Design and participants
Multi-site, matched cohort study
A total of n=81 women were included
Age at study entry: 33.9 yrs (pregnancy group), 24.4 (non-pregnancy group)
Inclusion criteria: BC diagnosis between 2000-2009, no child since their breast cancer diagnosis, potential to become pregnant at the time of study entry, completed at least one survey evaluating physical and mental health, e 40 or younger at diagnosis
Exclusion criteria:

Intervention
Comparing women, who got pregnant after BC and those who did not get pregnant

Outcomes
Physical health summary score (PHSS) and mental health summary score (MHSS)

Results
Pregnant group: n=27
Non-pregnant group: n=54

Descriptive analyses N (%):
- Any recurrence:
 - Pregnant group: 8 (29.6)
 - Non-pregnant group: 15 (27.8)
 - P*=0.86
- Survival:
 - Pregnant group: 24 (88.9)
 - Non-pregnant group: 47 (87%)
 - P*=0.80

*Conditional logistic regression, adjusted for matching (no β shown)

Pregnant and non-pregnant groups were disease-free (p<0.01)

Quality and comment, source of funding
Subpopulation from the WHEL study
Matched for cancer stage, age at diagnosis (within 4 years)
Small sample size
No information if women wanted to get pregnant
No information if women underwent assisted reproduction

Source of funding: NCI grants
Level of evidence: 4
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author: Kranick et al.</td>
<td>Cohort study from the Kaiser Permanente of Northern California (KPNC) database</td>
<td>Comparing women, who got pregnant after BC and those who did not get pregnant</td>
<td>Recurrence, survival Median follow-up: 12.7 yrs (pregnancy group) and 11.4 yrs (non-pregnancy group)</td>
<td>Recurrence: Unadjusted model: HR=1.1 (95% CI 0.7-1.7) Full model: HR=1.2 (95% CI 0.8-2.0)</td>
<td>Small sample size</td>
</tr>
<tr>
<td>Year: 2010</td>
<td>A total of n=451 women were included</td>
<td>12.7 yrs (pregnancy group) and 11.4 yrs (non-pregnancy group)</td>
<td>11.4 yrs (pregnancy group) and 11.4 yrs (non-pregnancy group)</td>
<td>Recurrence: Unadjusted model: HR=1.1 (95% CI 0.7-1.7) Full model: HR=1.2 (95% CI 0.8-2.0)</td>
<td>Matched for stage of disease at diagnosis, age at diagnosis (+/- 5 years), months of survival from date of diagnosis to last menstrual period prior to conception from date of diagnosis and disease status at time of conception of subsequent pregnancy (recurrence, no recurrence)</td>
</tr>
<tr>
<td>Journal: The Breast Journal [179]</td>
<td>Mean age at diagnosis: 32.0 yrs (pregnancy group), 34.1 yrs (non-pregnancy group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: women diagnosed with BC at age 45 or younger between 1968 and 1995 who were treated similarly within standard clinical protocols</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: women who were pregnant at time of diagnosis, lacking date of detection (of recurrence), metastatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Women were diagnosed with BC under the age of 46 years between 1968 and 1995.
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nation-wide cohort study</td>
<td>N=10,236 women with breast cancer</td>
<td>Pregnancy subsequent to breast cancer treatment</td>
<td>Survival analysis</td>
<td>Follow-up: 10 years</td>
<td>No pregnancy: n=9,865</td>
</tr>
<tr>
<td>Author: Kroman et al.</td>
<td>Mean/median age: n. a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year: 2008</td>
<td>Inclusion criteria: resected unilateral invasive carcinoma of the breast and no signs of distant metastasis as determined by routine examination, diagnosed before June 1st 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal: Acta Oncologica</td>
<td>Exclusion criteria: pregnancy at the time of diagnosis (childbirth less than 10 months after BC diagnosis, or abortion with a gestational age indicating that)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[180]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No information if women wanted to get pregnant/want to have another child</td>
<td>Big sample size</td>
<td>Long follow-up period</td>
<td>No information about breast feeding</td>
<td>Wide 95% CI</td>
</tr>
<tr>
<td></td>
<td>No information if assisted reproduction was used to get pregnant</td>
<td>Population-based study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Due to methodological constraints (e.g. no information on child wish) we propose to downgrade the level of evidence from 1b to 2a</td>
<td>Source of funding: U.S. Army Medical Research and Materiel Command</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Subgroup analysis of women with low-risk BC not receiving adjuvant systemic treatment (n=2,091): RR=0.56 (95% CI 0.29-1.11)
Adding relapse to the multivariate analysis did not change results (no data shown)
Interval from BC diagnosis to pregnancy:
2000-2002: 896 days (SD: 690)
2010-2012: 552 days (SD: 696)
(p<0.01)
Duration from BC diagnosis to pregnancy:
<table>
<thead>
<tr>
<th>2000-2002</th>
<th>2010-2012</th>
</tr>
</thead>
<tbody>
<tr>
<td><2 yrs</td>
<td>52.2%</td>
</tr>
<tr>
<td>2-<3 yrs</td>
<td>13%</td>
</tr>
</tbody>
</table>
| **Source of funding:** n.a.
Level of evidence 4 |
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-<4yrs 8.7% 8.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4-<5yrs 4.4% 5.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>=5yrs 21.7% 6.4%</td>
</tr>
</tbody>
</table>

Evidenztabellen
Tabelle 45: Evidenztabellen zum Thema Mammakarzinom der älteren Patientin

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR: Becker et al.</td>
<td>Systematic review of 11 RCTs</td>
<td>Aromatase inhibitors (AI) exemestane compared to tamoxifen (Primary)</td>
<td>Changes in Bone turnover markers, bone mineral density (BMD), Fracture rates</td>
<td>Aromatase inhibitors are associated with significantly increased bone turnover markers in subgroups (of n=4 studies)(no data shown)</td>
<td>Limited data on bone health and risk factors for fractures at study baseline</td>
</tr>
<tr>
<td>YEAR: 2012</td>
<td>A total of n=37,819 postmenopausal women with early BC were included</td>
<td>AI compared to tamoxifen after a 4-yrs of tamoxifen only treatment (sequential)</td>
<td>Follow-up range: 24 and 100 months</td>
<td></td>
<td>Bone health was no primary outcome in RCTs</td>
</tr>
<tr>
<td>JOURNAL: Journal of the American Geriatrics Society [182]</td>
<td>Mean age range: 59.9-65 yrs</td>
<td>AI compared to placebo after 5 years of tamoxifen only treatment (extended)</td>
<td></td>
<td>Significant lower bone mineral density (irrespective of type of aromatase inhibitor or sequence)</td>
<td>No information on calcium or vitamin D intake of the main trials</td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: RCT, postmenopausal women with early invasive unilateral BC, adjuvant treatment with AI, in case of multiple treatment arm studies only single-therapy arm was eligible, English publications</td>
<td></td>
<td>Fracture rates (of AI vs tamoxifen/placebo): Primary (n=2 trials): ATAC: 11 vs 7.7 (p<0.01) BIG 1-98: 9.3 vs 6.5 (p=0.02) Sequential (n=5 trials): 2 trials showed higher chance of fracture in AI group: ABCSG: 2 vs 1 (p=0.01); IES: 7 vs 4.9 (p=0.003) 2 trials showed no difference (2.2 vs 2.2 (p=0.97), 0.9 vs 0.9 (p=0.99)) or a less chance of fractures in the AI group (1.4 vs 2.6 (p=0.29), but those</td>
<td></td>
<td>Bone turnover marker and BMD results based on subgroup analyses</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: prior treatment with aromatase inhibitors</td>
<td></td>
<td>Fracture data were not uniformly collected in most studies</td>
<td></td>
<td>In the ATAC study osteoporosis or osteopenia was at participants’ discretion to report</td>
</tr>
<tr>
<td></td>
<td>11 trials included in meta-analysis Bone turnover markers/bone mineral density: 669 patients Fracture rates: 23,683 patients</td>
<td></td>
<td>Lacking data on BL risk for fracture and non-bone-related predictors of fracture (falling or other health conditions, medications)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Source of funding: (Government of Ontário)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Level of evidence 1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| AUTHOR: Brollo et al.
YEAR: 2013
JOURNAL: Cancer Treatment Reviews [183] | Systematic review and meta-analysis of 5 RCTs
A total of n=1,084 HER2-positive women older than 60 yrs were included
Mean/median age: n.a.
Inclusion criteria: English language, published studies, RCTs, original articles, intention-to-treat principle
Exclusion criteria: abstracts, letters, reviews, meta-analyses | Adjuvant trastuzumab + chemotherapy compared to chemotherapy only
disease free survival
Proportion of cardiac events
Follow-up range 1 to 3.75 years | DFS (2 trials with n=1,084 patients): HR=0.53 (95% CI 0.36-0.77) no significant heterogeneity p=0.17
Cardiac events (3 trial with n=612 patients and 31 events): HR=5.12 (95% CI 3.59-7.10); no significant heterogeneity p=0.36 | results remained not significant
Extended: Goss: 5.3 vs 4.6 (p=0.25)
Mamounas: 3.5 vs 2.5 (p=0.33) | Short follow up time
Different definitions of cardiac events, treatment regimes, eligibility criteria between studies
Subgroup analysis limited to patients older than 60 years
Results on cardiac events only for hypotheses generating due to comparison with patients <60 years in control group
Only intention-to-treat analyses were included
Source of funding: n. a.
Due to above mentioned limitations (short follow-up, subgroup analysis) the *level of evidence* is downgraded from 1a to 1b |
| AUTHOR: Morgan et al. | Cochrane Review and meta-analysis of 7 RCTs
Surgery (with or without endocrine therapy) | Primary outcomes:
Overall survival, | Surgery versus primary endocrine therapy: | Evidence of single studies was graded with level 3 of the Harbour and Miller system |
<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR: 2014</td>
<td>A total of n=1,081 women with operable BC endocrine therapy aged 70 years were included</td>
<td>compared to primary endocrine therapy</td>
<td>Progression-free survival</td>
<td>OS (3 trials, 495 women): HR= 0.98 (95% CI 0.81-1.20); no heterogeneity $I^2=25%$, p=0.26</td>
<td>Different doses of tamoxifen between trials (20mg/d, 40mg/d)</td>
</tr>
<tr>
<td>JOURNAL: Cochrane Database of Systematic Reviews</td>
<td>Mean/median age: n.a.</td>
<td>Secondary outcomes: adverse effects, local disease control, distant metastasis-free interval, Quality of Life</td>
<td>PFS (EORTC trial, 164 women): HR= 0.55 (95% CI=0.39-0.77)</td>
<td></td>
<td>Age-related subgroup meta-analysis was not possible on basis of published data</td>
</tr>
<tr>
<td>[184]</td>
<td>Inclusion criteria: RCT, women aged >=70 years, clinically-defines operable primary BC (T1-T3, T4b), minor skin involvement, N0-1, mobile lymph nodes</td>
<td>Follow-up range: 0-28 years</td>
<td>Adverse effects (insufficient data): In one trial (St Georges) no participant discontinued, 10 participants had side effects (hot flushes, skin rash, vaginal discharge, indigestion, breast pain, sleepiness)</td>
<td></td>
<td>Results from a small number of individually underpowered studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local disease control (3 trials, no analysis due to considerable risk of bias)</td>
<td></td>
<td>Interval validity was in some cases affected by competing risks and heterogeneity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Distant metastasis-free survival (2 trials, no meta-analysed data due to heterogeneity and competing risks)</td>
<td></td>
<td>Due to above mentioned methodological constraints we propose to downgrade the level of evidence from 1a to 1b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QoL (no trial reported data on QoL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Surgery plus endocrine therapy versus primary endocrine therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>OS (3 trials, 1,076 women):</td>
<td></td>
<td></td>
<td></td>
<td>HR=0.86 (95% CI 0.73-1.00); no heterogeneity I²=3%, p=0.36</td>
<td></td>
</tr>
<tr>
<td>Subgroup analyses:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS by oestrogen receptor status (limited data): Nottingham 2 trial all patients with positive status: HR= 0.80 (95% CI 0.28-2.32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC and GRETA trials with unknown status: HR= 0.86 (95% CI 0.73-1.00); no heterogeneity I²=50.9%, p=0.15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFS (GRETA trial, 474 women): HR=0.65 (95% CI 0.53-0.81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse effects (insufficient data): CRC trial reported that women had to drop out due to endocrine therapy-related adverse effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local disease control (2 trials, 929 women): HR=0.28 (95% CI 0.23-0.35), heterogeneity I²=66%, p=0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>AUTHOR: van de Water et al.</td>
<td>Systematic Review and meta-analysis of 5 RCT</td>
<td>Patients who received radiotherapy after surgery compared to those who did not</td>
<td>Primary outcome (in most studies) Loco-regional recurrence</td>
<td>Distant metastasis-free survival (no data due to unreliable data)</td>
<td>Older patients were defined as post-menopausal women</td>
</tr>
<tr>
<td>YEAR: 2014</td>
<td>Median age: 65 yrs</td>
<td></td>
<td>Secondary outcome (in most studies): distant recurrence/distant disease-free survival, overall survival</td>
<td>QoL (CRC trial): More psychosocial morbidity (p=0.03) in surgery group, but no differences between groups at 2 years</td>
<td>Data were obtained from intention-to-treat analyses</td>
</tr>
<tr>
<td>JOURNAL: Annals of Surgical Oncology</td>
<td>A total of n=3,190 patients was included in the analysis</td>
<td></td>
<td>Follow-up range: 4.5-13.7</td>
<td></td>
<td>No substantial heterogeneity between trials</td>
</tr>
<tr>
<td>[185]</td>
<td>Inclusion criteria: primary research article, addressing outcomes of breast-conserving surgery with or without radiotherapy in early stage breast cancer, RCT</td>
<td></td>
<td></td>
<td></td>
<td>Studies included patients with favourable tumour characteristics (majority had T1 tumours without nodal involvement, positive hormone receptor status)</td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: review, meta-analysis, not in English published</td>
<td></td>
<td></td>
<td></td>
<td>All patients received adjuvant systemic therapy (majority received tamoxifen, 1 trial gave chemotherapy or tamoxifen depending on hormone receptor status)</td>
</tr>
</tbody>
</table>
Evidenztabellen

<table>
<thead>
<tr>
<th>Source</th>
<th>Design and participants</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
<th>Quality and comment, source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Excluding results from two trials (Hughes et al., Ford et al.) due to twice as long follow-up compared to other studies. A former publication with a 5-year follow-up of Hughes et al. was included instead. No change in results (data not shown)</td>
<td>Source of funding: Dutch Cancer Society</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Absolute risk:</td>
<td>Level of evidence 1a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LR (after 5-years): Received RT: 2.2% (33 of 1,490, 95% CI 1.6-3.1) compared to No-RT group: 6.5% (97 of 1,495, 95% CI 5.3-7.9) Absolute Risk difference: 4.3 (95% CI 2.9-5.7); NNT=24 (to prevent 1 loco-regional recurrence in 5-years)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DM (after 5-years): Received RT: 2.7% (40 of 1,490, 95% CI 1.9-3.5) compared to No-RT group: 2.3% (35 of 1,495, 95% CI 1.6-3.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS: In both groups: 7.7% (115 of 1,490, 95% CI</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>Design and participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
<td>Quality and comment, source of funding</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.4–9.1; 115 of 1,495, 95 % CI 6.3–9.0</td>
<td></td>
</tr>
</tbody>
</table>
13.5. Recherchestrategien und Ergebnisse der Recherchen

13.5.1. Kapitel 3.3 Frauen mit erhöhtem Risiko für Brustkrebs

Recherchestrategie

Tabelle 46: Recherchestrategie der SF 3.3-1 in MEDLINE (via Ovid) (8. Juli 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*Genetic Testing/</td>
</tr>
<tr>
<td>2</td>
<td>counseling/ or *genetic counseling/</td>
</tr>
<tr>
<td>3</td>
<td>Genetic services/</td>
</tr>
<tr>
<td>4</td>
<td>risk assessment/</td>
</tr>
<tr>
<td>5</td>
<td>Heterozygote/</td>
</tr>
<tr>
<td>6</td>
<td>*genetic disease, inborn/</td>
</tr>
<tr>
<td>7</td>
<td>BRCA1 protein/</td>
</tr>
<tr>
<td>8</td>
<td>BRCA2 protein/</td>
</tr>
<tr>
<td>9</td>
<td>(BRCA1 or BRCA2 or ATM or CDH1 or CHEK2 or NBN or PALB2 or FANCN or PTEN or RAD51C or FAGO or RAD51D or TP53 or MLH1 or MSH2 or MSH6 or PMS2 or ((famil* history or carrier probability) adj6 breast cancer)).ti,ab,kw.</td>
</tr>
<tr>
<td>10</td>
<td>*Neoplasm Proteins/ge [Genetics]</td>
</tr>
<tr>
<td>11</td>
<td>*Breast Neoplasms/ge, pc [Genetics, Prevention & Control]</td>
</tr>
<tr>
<td>12</td>
<td>1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 10 or 11</td>
</tr>
<tr>
<td>13</td>
<td>9 and 12</td>
</tr>
<tr>
<td>14</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>15</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>16</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>17</td>
<td>15 and 16</td>
</tr>
<tr>
<td>18</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metastas* or neoplasm* or tumor* or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>19</td>
<td>14 or 17 or 18</td>
</tr>
<tr>
<td>20</td>
<td>13 and 19</td>
</tr>
<tr>
<td>21</td>
<td>*ultrasonography, mammary/</td>
</tr>
<tr>
<td>22</td>
<td>ultrasonography/</td>
</tr>
<tr>
<td>23</td>
<td>mammography/</td>
</tr>
<tr>
<td>24</td>
<td>Palpation/</td>
</tr>
<tr>
<td>25</td>
<td>"Early Detection of Cancer"/</td>
</tr>
<tr>
<td>26</td>
<td>diagnostic imaging/ or MAGNETIC RESONANCE IMAGING/</td>
</tr>
<tr>
<td>27</td>
<td>21 or 22 or 23 or 24 or 25 or 26</td>
</tr>
<tr>
<td>28</td>
<td>Randomized Controlled Trials as Topic/</td>
</tr>
<tr>
<td>29</td>
<td>randomized controlled trial/</td>
</tr>
<tr>
<td>30</td>
<td>Random Allocation/</td>
</tr>
<tr>
<td>31</td>
<td>Single Blind Method/</td>
</tr>
<tr>
<td>32</td>
<td>clinical trial/</td>
</tr>
<tr>
<td>33</td>
<td>clinical trial, phase i.pt.</td>
</tr>
<tr>
<td>34</td>
<td>clinical trial, phase ii.pt.</td>
</tr>
<tr>
<td>35</td>
<td>clinical trial, phase iii.pt.</td>
</tr>
<tr>
<td>36</td>
<td>clinical trial, phase iv.pt.</td>
</tr>
<tr>
<td>37</td>
<td>controlled clinical trial.pt.</td>
</tr>
<tr>
<td>38</td>
<td>randomized controlled trial.pt.</td>
</tr>
<tr>
<td>39</td>
<td>multicenter study.pt.</td>
</tr>
<tr>
<td>40</td>
<td>clinical trial.pt.</td>
</tr>
<tr>
<td>41</td>
<td>exp Clinical Trials as topic/</td>
</tr>
<tr>
<td>42</td>
<td>Double Blind Method/</td>
</tr>
<tr>
<td>43</td>
<td>28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42</td>
</tr>
<tr>
<td>44</td>
<td>(clinical adj trial$).tw.</td>
</tr>
<tr>
<td>45</td>
<td>((singl$ or doubl$ or treb$ or tripl$) adj (blind$3 or mask$3)).tw.</td>
</tr>
<tr>
<td>46</td>
<td>PLACEBOS/</td>
</tr>
<tr>
<td>47</td>
<td>placebo$.tw.</td>
</tr>
<tr>
<td>48</td>
<td>randomly allocated.tw.</td>
</tr>
<tr>
<td>49</td>
<td>(allocated adj2 random$).tw.</td>
</tr>
<tr>
<td>50</td>
<td>44 or 45 or 46 or 47 or 48 or 49</td>
</tr>
<tr>
<td>51</td>
<td>43 or 50</td>
</tr>
<tr>
<td>52</td>
<td>case report.tw.</td>
</tr>
<tr>
<td>53</td>
<td>letter/</td>
</tr>
<tr>
<td>54</td>
<td>historical article/</td>
</tr>
<tr>
<td>55</td>
<td>52 or 53 or 54</td>
</tr>
<tr>
<td>56</td>
<td>51 not 55</td>
</tr>
<tr>
<td>57</td>
<td>Epidemiologic studies/</td>
</tr>
<tr>
<td>58</td>
<td>exp case control studies/</td>
</tr>
<tr>
<td>59</td>
<td>exp cohort studies/</td>
</tr>
<tr>
<td>60</td>
<td>Case control.tw.</td>
</tr>
<tr>
<td>61</td>
<td>(cohort adj (study or studies)).tw.</td>
</tr>
<tr>
<td>62</td>
<td>Cohort analy$.tw.</td>
</tr>
<tr>
<td>63</td>
<td>(Follow up adj (study or studies)).tw.</td>
</tr>
<tr>
<td>64</td>
<td>(observational adj (study or studies)).tw.</td>
</tr>
<tr>
<td>65</td>
<td>Longitudinal.tw.</td>
</tr>
<tr>
<td>66</td>
<td>Retrospective.tw.</td>
</tr>
<tr>
<td>67</td>
<td>Cross sectional.tw.</td>
</tr>
<tr>
<td>68</td>
<td>Cross-sectional studies/</td>
</tr>
<tr>
<td>69</td>
<td>57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68</td>
</tr>
<tr>
<td>70</td>
<td>Meta-Analysis as Topic/</td>
</tr>
<tr>
<td>71</td>
<td>meta analy$.tw.</td>
</tr>
<tr>
<td>72</td>
<td>metaanaly$.tw.</td>
</tr>
<tr>
<td>73</td>
<td>Meta-Analysis/</td>
</tr>
<tr>
<td>74</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td>75</td>
<td>exp Review Literature as Topic/</td>
</tr>
<tr>
<td>76</td>
<td>or/70-75</td>
</tr>
<tr>
<td>77</td>
<td>cochrane.ab.</td>
</tr>
<tr>
<td>78</td>
<td>embase.ab.</td>
</tr>
<tr>
<td>79</td>
<td>(psychlit or psyclit).ab.</td>
</tr>
<tr>
<td>80</td>
<td>(psychinfo or psycinfo).ab.</td>
</tr>
<tr>
<td>81</td>
<td>(cinahl or cinhal).ab.</td>
</tr>
<tr>
<td>82</td>
<td>science citation index.ab.</td>
</tr>
<tr>
<td>83</td>
<td>bids.ab.</td>
</tr>
<tr>
<td>84</td>
<td>cancerlit.ab.</td>
</tr>
<tr>
<td>85</td>
<td>or/77-84</td>
</tr>
<tr>
<td>86</td>
<td>reference list$.ab.</td>
</tr>
<tr>
<td>87</td>
<td>bibliograph$.ab.</td>
</tr>
<tr>
<td>88</td>
<td>hand-search$.ab.</td>
</tr>
<tr>
<td>89</td>
<td>relevant journals.ab.</td>
</tr>
<tr>
<td>90</td>
<td>manual search$.ab.</td>
</tr>
<tr>
<td>91</td>
<td>or/86-90</td>
</tr>
<tr>
<td>92</td>
<td>selection criteria.ab.</td>
</tr>
<tr>
<td>93</td>
<td>data extraction.ab.</td>
</tr>
<tr>
<td>94</td>
<td>92 or 93</td>
</tr>
<tr>
<td>95</td>
<td>Review/</td>
</tr>
<tr>
<td>96</td>
<td>94 and 95</td>
</tr>
<tr>
<td>97</td>
<td>Comment/</td>
</tr>
<tr>
<td>98</td>
<td>Letter/</td>
</tr>
<tr>
<td>99</td>
<td>Editorial/</td>
</tr>
<tr>
<td>100</td>
<td>animal/</td>
</tr>
<tr>
<td>101</td>
<td>human/</td>
</tr>
<tr>
<td>102</td>
<td>100 not (100 and 101)</td>
</tr>
<tr>
<td>103</td>
<td>or/97-99,102</td>
</tr>
<tr>
<td>104</td>
<td>76 or 85 or 91 or 96</td>
</tr>
<tr>
<td>105</td>
<td>104 not 103</td>
</tr>
<tr>
<td>106</td>
<td>20 and 27</td>
</tr>
<tr>
<td>107</td>
<td>limit 106 to yr="2007-Current"</td>
</tr>
<tr>
<td>108</td>
<td>limit 107 to english</td>
</tr>
<tr>
<td>109</td>
<td>limit 107 to german</td>
</tr>
<tr>
<td>110</td>
<td>108 or 109</td>
</tr>
<tr>
<td>111</td>
<td>56 and 110</td>
</tr>
<tr>
<td>112</td>
<td>69 and 110</td>
</tr>
</tbody>
</table>
Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations Datenbank ergab n=0 Treffer. Die Recherchestrategie wurde für die Datenbanken CDSR und CENTRAL der Cochrane Library und für die Suche nach DARE Reviews via PubMed Health entsprechend modifiziert. Die Suche in der Cochrane Library ergab n=6 und in Pubmed Health n=5 Treffer.

Ein- und Ausschlusskriterien

Tabelle 47: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 3.3.1)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Ausschlussgründe</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe wie PICO</td>
<td>A1: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>E2: Publikationstyp Systematische Übersichtsarbeiten, RCT, Observational Studies</td>
<td>A2: Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>E3: Suchzeitraum 2007 - Aktuell</td>
<td>A3: Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>E4: Sprachen Deutsch und Englisch</td>
<td>A4: Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>E5: Intervention wie PICO</td>
<td>A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.) (nicht PICO)</td>
</tr>
<tr>
<td>E6: Kontrolle wie PICO</td>
<td>A6: Doppelpublikation oder aktuellere Publikation vorhanden</td>
</tr>
</tbody>
</table>
Ergebnis der Recherche

Abbildung 3: Grafische Darstellung der Ergebnisse der Recherche SF 3.3-1 (Flussdiagramm)
Eingeschlossene Publikationen

<table>
<thead>
<tr>
<th>Autor*innen</th>
<th>Titel</th>
</tr>
</thead>
</table>

Ausgeschlossene Publikationen

Ausschlussgrund A1: Anderes Thema (nicht Fragestellung)

<table>
<thead>
<tr>
<th>Autor*innen</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. E. Guerra, M. Sherman and K. Armstrong</td>
<td>2009: Diffusion of breast cancer risk assessment in primary care</td>
</tr>
<tr>
<td>G. W. Hooker, K. G. Leventhal, T. DeMarco, B. N. Peshkin, C. Finch, E. Wahl, J. R. Joines, K. Brown, H. Valdimarsdottir and M. D. Schwartz</td>
<td>2011: Longitudinal changes in patient distress following interactive decision aid use among BRCA1/2 carriers: a randomized trial</td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): interim results</td>
</tr>
<tr>
<td>P. Subramanian, N. O. Oranye, A. M. Masri, N. A. Taib and N. Ahmad, 2013: Breast cancer knowledge and screening behaviour among women with a positive family history: a cross sectional study</td>
<td></td>
</tr>
<tr>
<td>J. Veltman, R. Mann, T. Kok, I. M. Obdeijn, N. Hoogerbrugge, J. G. Blickman and C. Boetes, 2008: Breast tumor characteristics of BRCA1 and BRCA2 gene mutation carriers on MRI</td>
<td></td>
</tr>
<tr>
<td>A. J. Stolier and E. A. Levine, 2013: Reducing the risk of nipple necrosis: technical observations in 340 nipple-sparing mastectomies</td>
<td></td>
</tr>
</tbody>
</table>

Ausschlussgrund A2: Andere Intervention (nicht PICO)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
</table>
Ausschlussgrund A3: Andere Kontrolle (nicht PICO)

E. Couto, E. Banks, G. Reeves, K. Pirie and V. Beral, 2008: Family history and breast cancer tumour characteristics in screened women

Ausschlussgrund A4: Anderes Outcome (nicht PICO)

E. J. Granader, B. Dwamena and R. C. Carlos, 2008: MRI and mammography surveillance of women at increased risk for breast cancer: recommendations using an evidence-based approach

J. K. Kam, P. Naidu, A. K. Rose and G. B. Mann, 2013: Five-year analysis of magnetic resonance imaging as a screening tool in women at hereditary risk of breast cancer

S. J. Lord, W. Lei, P. Craft, J. N. Cawson, I. Morris, S. Walleser, A. Griffiths, S. Parker and N. Houssami, 2007: A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer

D. B. Portnoy, J. T. Loud, P. K. Han, P. L. Mai and M. H. Greene, 2015: Effects of false-positive cancer screenings and cancer worry on risk-reducing surgery among BRCA1/2 carriers

D. Morgan, H. Sylvester, F. L. Lucas and S. Miesfeldt, 2009: Cancer prevention and screening practices among women at risk for hereditary breast and ovarian cancer after genetic counseling in the community setting

Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

L. L. Ballinger, 2012: Hereditary gynecologic cancers: risk assessment, counseling, testing and management

K. Rhiem and R. K. Schmutzler, 2014: [Risk-adapted surveillance: focus on familial breast and ovarian cancer]

Kapitel 3.3 Frauen mit erhöhtem Risiko für Brustkrebs

Recherchestrategie

Tabelle 48: Recherchestrategie SF 3.3-2 in MEDLINE (via Ovid) (17. Juli 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*Genetic Testing/</td>
</tr>
<tr>
<td>2</td>
<td>counseling/ or *genetic counseling/</td>
</tr>
<tr>
<td>3</td>
<td>Genetic services/</td>
</tr>
<tr>
<td>4</td>
<td>risk assessment/</td>
</tr>
<tr>
<td>5</td>
<td>Heterozygote/</td>
</tr>
<tr>
<td>6</td>
<td>*genetic disease, inborn/</td>
</tr>
<tr>
<td>7</td>
<td>BRCA1 protein/</td>
</tr>
<tr>
<td>8</td>
<td>BRCA2 protein/</td>
</tr>
<tr>
<td>9</td>
<td>(BRCA1 or BRCA2 or ATM or CDH1 or CHEK2 or NBN or PALB2 or FANCN or PTEN or RAD51C or FANCO or RAD51D or TP53 or MLH1 or MSH2 or MSH6 or PMS2 or ((famil* history or carrier probability) adj6 breast cancer)).ti,ab,kw.</td>
</tr>
<tr>
<td>10</td>
<td>*Neoplasm Proteins/ge [Genetics]</td>
</tr>
<tr>
<td>11</td>
<td>*Breast Neoplasms/ge, pc [Genetics, Prevention & Control]</td>
</tr>
<tr>
<td>12</td>
<td>1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 10 or 11</td>
</tr>
<tr>
<td>13</td>
<td>9 and 12</td>
</tr>
<tr>
<td>14</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>15</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>16</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>17</td>
<td>15 and 16</td>
</tr>
<tr>
<td>18</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metastas* or neoplasm* or tumo? or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>19</td>
<td>14 or 17 or 18</td>
</tr>
<tr>
<td>20</td>
<td>13 and 19</td>
</tr>
<tr>
<td>21</td>
<td>ovariectomy/</td>
</tr>
<tr>
<td>22</td>
<td>"Gynecologic Surgical Procedures"/</td>
</tr>
<tr>
<td>23</td>
<td>Mastectomy/</td>
</tr>
<tr>
<td>24</td>
<td>*Breast Neoplasms/su [Surgery]</td>
</tr>
<tr>
<td>25</td>
<td>Mastectomy, Subcutaneous/ or *Mastectomy, Segmental/mt or *Mastectomy, Radical/mt or *Mastectomy, Simple/mt</td>
</tr>
<tr>
<td>26</td>
<td>"'Hereditary Breast and Ovarian Cancer Syndrome"/pc, su [Prevention & Control, Surgery]</td>
</tr>
<tr>
<td>27</td>
<td>((prophylac* adj3 (mastecto* or ovarieto*)) or salpingo-oophorectomy).ti,ab,kw.</td>
</tr>
<tr>
<td>28</td>
<td>21 or 22 or 23 or 24 or 25 or 26</td>
</tr>
<tr>
<td>29</td>
<td>27 and 28</td>
</tr>
<tr>
<td>30</td>
<td>20 and 29</td>
</tr>
<tr>
<td>31</td>
<td>limit 30 to yr="2007 -Current"</td>
</tr>
<tr>
<td>32</td>
<td>limit 31 to english</td>
</tr>
<tr>
<td>33</td>
<td>limit 31 to german</td>
</tr>
</tbody>
</table>
34 32 or 33
35 Randomized Controlled Trials as Topic/
36 randomized controlled trial/
37 Random Allocation/
38 Single Blind Method/
39 clinical trial/
40 clinical trial, phase i.pt.
41 clinical trial, phase ii.pt.
42 clinical trial, phase iii.pt.
43 clinical trial, phase iv.pt.
44 controlled clinical trial.pt.
45 randomized controlled trial.pt.
46 multicenter study.pt.
47 clinical trial.pt.
48 exp Clinical Trials as topic/
49 Double Blind Method/
50 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49
51 (clinical adj trial$).tw.
52 ((singl$ or doubl$ or treb$ or tripl$) adj (blind$3 or mask$3)).tw.
53 PLACEBOS/
54 placebo$.tw.
55 randomly allocated.tw.
56 (allocated adj2 random$).tw.
57 51 or 52 or 53 or 54 or 55 or 56
58 50 or 57
59 case report.tw.
60 letter/
61 historical article/
62 59 or 60 or 61
63 58 not 62
64 Meta-Analysis as Topic/
65 meta analy$.tw.
66 metaanaly$.tw.
67 Meta-Analysis/
68 (systematic adj (review$1 or overview$1)).tw.
69 exp Review Literature as Topic/
70 or/64-69
71 cochrane.ab.
72 embase.ab.
73 (psychlit or psyclit).ab.
74 (psychinfo or psycinfo).ab.

Ein- und Ausschlusskriterien

Tabelle 49: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 3.3-2)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Ausschlussgründe</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>A1: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>A2: Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>A3: Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>A4: Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.) (nicht PICO)</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>A6: Doppelpublikation oder aktuellere Publikation vorhanden</td>
</tr>
</tbody>
</table>

- E1: Zielgruppe
- E2: Publikationstyp
- E3: Suchzeitraum
- E4: Sprachen
- E5: Intervention
- E6: Kontrolle(n)

- A1: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)
- A2: Andere Intervention (nicht PICO)
- A3: Andere Kontrolle (nicht PICO)
- A4: Anderes Outcome (nicht PICO)
- A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.) (nicht PICO)
- A6: Doppelpublikation oder aktuellere Publikation vorhanden
Ergebnis der Recherche

Abbildung 4: Grafische Darstellung der Ergebnisse der Recherche SF 3.3-2 (Flussdiagramm)
Eingeschlossene Publikationen

F. De Felice, C. Marchetti, A. Musella, I. Palaia, G. Perniola, D. Musio, L. Muzii, V. Tombolini und P. Benedetti Panici, 2015: Bilateral risk-reduction mastectomy in BRCA1 and BRCA2 mutation carriers: a meta-analysis

D. G. Evans, S. L. Ingham, A. Baildam, G. L. Ross, F. Laloo, I. Buchan and A. Howell, 2013: Contralateral mastectomy improves survival in women with BRCA1/2-associated breast cancer

Ausgeschlossene Publikationen (Volltextscreening)

Ausschlussgrund A1: Anderes Thema (nicht Fragestellung)

Schmutzler, 2012: The risk of contralateral breast cancer in patients from BRCA1/2 negative high risk families as compared to patients from BRCA1 or BRCA2 positive families: a retrospective cohort study

Ausschlussgrund A3: Andere Kontrolle (nicht PICO)

<table>
<thead>
<tr>
<th>AutorInnen</th>
<th>Jahr</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. E. Isern, N. Loman, J. Malina, H. Olsson and A. Ringberg</td>
<td>2008</td>
<td>Histopathological findings and follow-up after prophylactic mastectomy and immediate breast reconstruction in 100 women from families with hereditary breast cancer</td>
</tr>
<tr>
<td>Y. C. T. Ramon, A. Torres, C. Alonso, D. Fisas, B. Ojeda, I. Boguna, J. Prat, M. Baiget and A. Barnadas</td>
<td>2011</td>
<td>Risk factors associated with the occurrence of breast cancer after bilateral salpingo-ooophorectomy in high-risk women</td>
</tr>
</tbody>
</table>

Ausschlussgrund A4: Anderes Outcome (nicht PICO)

<table>
<thead>
<tr>
<th>AutorInnen</th>
<th>Jahr</th>
<th>Titel</th>
</tr>
</thead>
</table>

Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

<table>
<thead>
<tr>
<th>AutorInnen</th>
<th>Jahr</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. G. Evans, R. Clayton, P. Donnai, A. Shenton and F. Lalloo</td>
<td>2009</td>
<td>Risk-reducing surgery for ovarian cancer: outcomes in 300 surgeries suggest a low peritoneal primary risk</td>
</tr>
</tbody>
</table>

Ausschlussgrund A6: Doppelpublikation, veraltete Publikation

<table>
<thead>
<tr>
<th>AutorInnen</th>
<th>Jahr</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Marchetti, F. De Felice, I. Palaia, G. Perniola, A. Musella, D. Musio, L. Muzli, V. Tombolini and P. B. Panici</td>
<td>2014</td>
<td>Risk-reducing salpingo-ooophorectomy: a meta-analysis on impact on ovarian cancer risk and all cause mortality in BRCA 1 and BRCA 2 mutation carriers</td>
</tr>
</tbody>
</table>
13.5.3. Kapitel 4.2 Prätherapeutische Ausbreitungsdagnostik bei Patientinnen mit auffälligen bzw. suspekten Befunden der Mamma

Recherchestrategie

Tabelle 50: Recherchestrategie SF 4.2-1 in MEDLINE (via Ovid) (25. August 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>2</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>3</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>4</td>
<td>2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumo*r or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>6</td>
<td>1 or 4 or 5</td>
</tr>
<tr>
<td>7</td>
<td>axilla/ or lymph nodes/ or lymphatic metastasis/</td>
</tr>
<tr>
<td>8</td>
<td>(lymph* or lymph nod* or metasta*).ti,ab,kw.</td>
</tr>
<tr>
<td>9</td>
<td>7 or 8</td>
</tr>
<tr>
<td>10</td>
<td>6 and 9</td>
</tr>
<tr>
<td>11</td>
<td>(Core needle or core-needle or CNB or fine-needle or Fine needle or FNB).ti,ab,kw.</td>
</tr>
<tr>
<td>12</td>
<td>Biopsy, Fine-Needle/ or Biopsy/ or Biopsy, Needle/ or Biopsy, Large-Core Needle/</td>
</tr>
<tr>
<td>13</td>
<td>biops*.ti,ab,kw.</td>
</tr>
<tr>
<td>14</td>
<td>11 or 12 or 13</td>
</tr>
<tr>
<td>15</td>
<td>(Core needle or core-needle or CNB).ti,ab,kw.</td>
</tr>
<tr>
<td>16</td>
<td>(fine-needle or Fine needle or FNB).ti,ab,kw.</td>
</tr>
<tr>
<td>17</td>
<td>15 and 16</td>
</tr>
<tr>
<td>18</td>
<td>14 and 17</td>
</tr>
<tr>
<td>19</td>
<td>10 and 18</td>
</tr>
<tr>
<td>20</td>
<td>limit 19 to (yr="2007 -Current" and (english or german))</td>
</tr>
</tbody>
</table>

Anzahl der Treffer: n=30

Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations ergab n=8 Treffer. Die Recherchestrategie wurde für die Cochrane Library (CDSR, DARE und CENTRAL) entsprechend modifiziert. Die Suche ergab weitere n=4 Treffer in der CENTRAL Datenbank.
Ein- und Ausschlusskriterien

Tabelle 51: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 4.2-1)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Ausschlussgründe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschlussgründe</td>
<td>Ausschlussgründe</td>
</tr>
<tr>
<td>E1: Zielgruppe</td>
<td>A1: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>A2: Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>A3: Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>A4: Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>A6: Doppelpublikation oder aktuellere Publikation vorhanden</td>
</tr>
<tr>
<td>Systematische Übersichtsarbeiten + RCT + Observational Studies</td>
<td></td>
</tr>
<tr>
<td>2007 - Aktuell</td>
<td></td>
</tr>
<tr>
<td>Deutsch und englisch</td>
<td></td>
</tr>
<tr>
<td>Wie PICO</td>
<td></td>
</tr>
<tr>
<td>Wie PICO</td>
<td></td>
</tr>
<tr>
<td>Wie PICO</td>
<td></td>
</tr>
</tbody>
</table>

Einschlussgründe

- **E1**: Zielgruppe
- **E2**: Publikationstyp
- **E3**: Suchzeitraum
- **E4**: Sprachen
- **E5**: Intervention
- **E6**: Kontrolle(n)

Ausschlussgründe

- **A1**: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)
- **A2**: Andere Intervention (nicht PICO)
- **A3**: Andere Kontrolle (nicht PICO)
- **A4**: Anderes Outcome (nicht PICO)
- **A5**: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)
- **A6**: Doppelpublikation oder aktuellere Publikation vorhanden
Ergebnis der Recherche

Expertenbeitrag
$n = 5$

Suchtreffer
$n = 42$

Durchsicht Titel/Abstract
$n = 41$

Durchsicht Volltextpublikationen
$n = 14$

Eingeschlossene Publikationen
$n = 4$

Dubletten
$n = 1$

Ausgeschlossene Publikationen
$n = 32$

A1 = 3
A2 = 1
A4 = 1
A5 = 4
A6 = 1

Abbildung 5: Grafische Darstellung der Ergebnisse der Recherche SF 4.2-1 (Flussdiagramm)
Eingeschlossene Publikationen

H. S. Ahn, S. M. Kim, M. Jang, B. La Yun, S. W. Kim, E. Kang, S. Y. Park, W. K. Moon and H. Y. Choi, 2013: Comparison of sonography with sonographically guided fine-needle aspiration biopsy and core-needle biopsy for initial axillary staging of breast cancer

Ausgeschlossene Publikationen (Volltextscreening)

Ausschlussgrund A1: Anderes Thema (nicht Fragestellung)

Moormann et al., 2014: Axillary Ultrasound in Breast Cancer Patients Helps in Identifying patients Preoperatively with Limited Disease of the Axilla

Lee et al., 2013: The Efficacy of Axillary Ultrasound in the Detection of Nodal Metastasis in breast Cancer

Ausschlussgrund A2: Andere Intervention (nicht PICO)

Ausschlussgrund A4: Anderes Outcome (nicht PICO)

J. Liikanen, M. Leidenius, H. Joensuu, J. Vironen, P. Heikkila and T. Meretoja, 2016: Breast cancer prognosis and isolated tumor cell findings in axillary lymph nodes after core needle biopsy and fine needle aspiration cytology: Biopsy method and breast cancer outcome

Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

C. Garbar and H. Cure, 2013: Fine-needle aspiration cytology can play a role in neoadjuvant chemotherapy in operable breast cancer

I. Gruber, M. Hahn, T. Fehm, C. Hann von Weyhern, A. Stabler, A. Winckelmann, D. Wallwiener and T. Kuhn, 2012: Relevance and methods of interventional breast sonography in preoperative axillary lymph node staging

Lyman et al., 2014: ASCO Guideline: Sentinel Lymph node biopsy for patients with early-stage breast cancer
Müller-Schimpfe et al., 2014: Konsensustreffen der Kursleiter in der Mammadiagnostik

Ausschlussgrund A6: Doppelpublikation, veraltete Publikation

Kapitel 4.5 Pathomorphologische Untersuchungen

Recherchestrategie

Tabelle 52: Recherchestrategie SF 4.5-1 in MEDLINE (via Ovid) (14. Juni 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*Biomarkers, Tumor/ge [Genetics]</td>
</tr>
<tr>
<td>2</td>
<td>*Breast Neoplasms/ge [Genetics]</td>
</tr>
<tr>
<td>3</td>
<td>gene expression profilation</td>
</tr>
<tr>
<td>4</td>
<td>*Gene expression regulation/ or *gene expression regulation, neoplastic/</td>
</tr>
<tr>
<td>5</td>
<td>*Gene Expression Profiling/mt [Methods]</td>
</tr>
<tr>
<td>6</td>
<td>*Neoplasm Proteins/an [Analysis]</td>
</tr>
<tr>
<td>7</td>
<td>*Microarray Analysis/mt, st, td [Methods, Standards, Trends]</td>
</tr>
<tr>
<td>8</td>
<td>*Gene Expression Profiling/st</td>
</tr>
<tr>
<td>9</td>
<td>*Genetic Testing/mt, st, td [Methods, Standards, Trends]</td>
</tr>
<tr>
<td>10</td>
<td>Risk Assessment/</td>
</tr>
<tr>
<td>11</td>
<td>*Neoplasm Recurrence, Local/ge [Genetics]</td>
</tr>
<tr>
<td>12</td>
<td>1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11</td>
</tr>
<tr>
<td>13</td>
<td>((multi-gene or multigene or panel or gene-expression or microarray*) and (test* or panel* or profil* or assay*)).tw,ab,kw.</td>
</tr>
<tr>
<td>14</td>
<td>(“RS” or Recurrence Score or “ROR” or Risk of recurrence).tw,ab,kw.</td>
</tr>
<tr>
<td>15</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or “hereditary breast and ovarian cancer syndrome”/</td>
</tr>
<tr>
<td>16</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>17</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>18</td>
<td>16 and 17</td>
</tr>
<tr>
<td>19</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumour or HER2 or "PgR-positive" or "PgR-(+)" or "ER-positive" or "ER-(+)" or "node-positive" or "node positive" or pN1))).ti,ab,kw.</td>
</tr>
<tr>
<td>20</td>
<td>15 or 18 or 19</td>
</tr>
<tr>
<td>21</td>
<td>(Endopredict or MammaPrint or Oncotype or Prosigna or "21-gene" or "70-gene" or "50-gene" or "12-gene" or 21 gen* or 70 gen* or 50 gen* or 12 gen* or PAM50).ti,ab,kw.</td>
</tr>
<tr>
<td>22</td>
<td>12 or 13 or 14</td>
</tr>
<tr>
<td>23</td>
<td>20 and 22</td>
</tr>
<tr>
<td>24</td>
<td>21 and 23</td>
</tr>
<tr>
<td>25</td>
<td>Randomized Controlled Trials as Topic/</td>
</tr>
<tr>
<td>26</td>
<td>randomized controlled trial/</td>
</tr>
<tr>
<td>27</td>
<td>Random Allocation/</td>
</tr>
<tr>
<td>28</td>
<td>Single Blind Method/</td>
</tr>
<tr>
<td>29</td>
<td>clinical trial/</td>
</tr>
<tr>
<td>30</td>
<td>clinical trial, phase i.pt.</td>
</tr>
<tr>
<td>31</td>
<td>clinical trial, phase ii.pt.</td>
</tr>
<tr>
<td>32</td>
<td>clinical trial, phase iii.pt.</td>
</tr>
<tr>
<td>33</td>
<td>clinical trial, phase iv.pt.</td>
</tr>
</tbody>
</table>
Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations Datenbank ergab n=6 Treffer. Die Recherchestategie wurde für die Datenbanken CDSR, CENTAL und DARE der Cochrane Library entsprechend modifiziert und die Suche ergab n=12 Treffer. Zusätzlich wurden die klinischen Register clinicaltrials.gov und EU trials mit den Begriffskombinationen ‚breast neoplasms and 21-gene assay‘, ‚breast neoplasms and 12-gene assay‘, ‚breast neoplasms and 50-gene assay‘, ‚breast neoplasms and 70-gene assay‘, ‚12-gene or 21-gene or 50-gene or 70-gene‘ nach Studien ab 2015, die bereits Ergebnisse aufweisen (completed und has results/studies with results), durchsucht. Es wurden n=0 Treffer identifiziert.
Ein- und Ausschlusskriterien

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>Wie PICO</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>RCTs</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>2015 - Aktuell</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>Deutsch oder englisch</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>Wie PICO</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>Wie PICO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausschlussgründe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>A2</td>
<td>Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>A3</td>
<td>Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>A4</td>
<td>Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>A5</td>
<td>Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>A6</td>
<td>Doppelpublikation oder aktuellere Publikation vorhanden</td>
</tr>
</tbody>
</table>
Ergebnisse der Recherche

Durchsicht Titel/Abstract
\(n = 35 \)

Durchsicht Volltextpublikationen
\(n = 8 \)

Eingeschlossene Publikationen
\(n = 3 \)

Ausgeschlossene Publikationen
\(A1 = 3 \)
\(A3 = 1 \)
\(A6 = 1 \)

Suchtreffer
\(n = 37 \)

Dubletten
\(n = 10 \)

Ausgeschlossene Publikationen
\(n = 27 \)

Abbildung 6: Grafische Darstellung der Ergebnisse der Recherche SF 4.5.1 (Flussdiagramm)
Eingeschlossene Publikationen

Ausgeschlossene Publikationen (Volltextscreening)

Ausschlussgrund A1: Anderes Thema (nicht Fragestellung)

F. Fitzal, M. Filipits, M. Rudas, R. Greil, O. Dietze, H. Samonigg, S. Lax, W. Herz, P. Dubsky, R. Bartsch, R. Kronenwett and M. Gnant, 2015: The genomic expression test EndoPredict is a prognostic tool for identifying risk of local recurrence in postmenopausal endocrine receptor-positive, her2neu-negative breast cancer patients randomised within the prospective ABCSG 8 trial

Ausschlussgrund A3: Andere Kontrolle (nicht PICO)

Ausschlussgrund A6: Doppelpublikation oder aktuellere Publikation vorhanden

Recherchestrategien

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Ki67 or MKI67 or proliferation marker).tw,ab,kw.</td>
</tr>
<tr>
<td>2</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/</td>
</tr>
<tr>
<td>3</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>4</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>5</td>
<td>3 and 4</td>
</tr>
<tr>
<td>6</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumor? or HER2 or "PgR-positive" or "PgR-(+)" or "ER-positive" or "ER- (+)"))).ti,ab,kw.</td>
</tr>
<tr>
<td>7</td>
<td>2 or 5 or 6</td>
</tr>
<tr>
<td>8</td>
<td>Meta-Analysis as Topic/</td>
</tr>
<tr>
<td>9</td>
<td>meta analy$.tw.</td>
</tr>
<tr>
<td>10</td>
<td>metaanaly$.tw.</td>
</tr>
<tr>
<td>11</td>
<td>Meta-Analysis/</td>
</tr>
<tr>
<td>12</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td>13</td>
<td>exp Review Literature as Topic/</td>
</tr>
<tr>
<td>14</td>
<td>or/8-13</td>
</tr>
<tr>
<td>15</td>
<td>cochrane.ab.</td>
</tr>
<tr>
<td>16</td>
<td>embase.ab.</td>
</tr>
<tr>
<td>17</td>
<td>(psychlit or psyclit).ab.</td>
</tr>
<tr>
<td>18</td>
<td>(psychinfo or psycinfo).ab.</td>
</tr>
<tr>
<td>19</td>
<td>(cinahl or cinhal).ab.</td>
</tr>
<tr>
<td>20</td>
<td>science citation index.ab.</td>
</tr>
<tr>
<td>21</td>
<td>bids.ab.</td>
</tr>
<tr>
<td>22</td>
<td>cancerlit.ab.</td>
</tr>
<tr>
<td>23</td>
<td>or/15-22</td>
</tr>
<tr>
<td>24</td>
<td>reference list$.ab.</td>
</tr>
<tr>
<td>25</td>
<td>bibliograph$.ab.</td>
</tr>
<tr>
<td>26</td>
<td>hand-search$.ab.</td>
</tr>
<tr>
<td>27</td>
<td>relevant journals.ab.</td>
</tr>
<tr>
<td>28</td>
<td>manual search$.ab.</td>
</tr>
<tr>
<td>29</td>
<td>or/24-28</td>
</tr>
<tr>
<td>30</td>
<td>selection criteria.ab.</td>
</tr>
<tr>
<td>31</td>
<td>data extraction.ab.</td>
</tr>
<tr>
<td>32</td>
<td>30 or 31</td>
</tr>
<tr>
<td>33</td>
<td>Review/</td>
</tr>
<tr>
<td>34</td>
<td>32 or 33</td>
</tr>
<tr>
<td>35</td>
<td>Comment/</td>
</tr>
<tr>
<td>36</td>
<td>Letter/</td>
</tr>
</tbody>
</table>
Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations Datenbank ergab n=7 Treffer. Die Recherchestrategie wurde für die Datenbanken CDSR, CENTRAL und DARE der Cochrane Library entsprechend modifiziert und die Suche ergab n=2 Treffer. Zusätzlich wurden die klinischen Register clinicaltrials.gov und EU trials mit den Begriffskombinationen - im Abschnitt Targeted Search: Intervention: ‘Ki-67 or MKI67 or MKi-67, nach Studien ab 2015, die bereits Ergebnisse aufweisen (completed and has results/studies with results), durchsucht. Es wurden n=4 Treffer durch diese Suche identifiziert.

Ein- und Ausschlusskriterien

Tabelle 54: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 4.5-2)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>Wie PICO</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>Systematische Übersichtsarbeiten, RCTs</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>2015 - Aktuell</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>Wie PICO</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>Wie PICO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausschlussgründe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>A2</td>
<td>Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>A3</td>
<td>Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>A4</td>
<td>Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>A5</td>
<td>Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>A6</td>
<td>Doppelpublikation oder aktuellere Publikation vorhanden; ggf. zu alte Publikation</td>
</tr>
</tbody>
</table>
Ergebnisse der Recherche

Abbildung 7: Grafische Darstellung der Ergebnisse der Recherche SF 4.5-2 (Flussdiagramm)
Eingeschlossene Publikationen

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Jahr</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Petrelli, G. Viale, M. Cabiddu and S. Barni</td>
<td>2015</td>
<td>Prognostic value of different cut-off levels of Ki-67 in breast cancer: a systematic review and meta-analysis of 64,196 patients</td>
</tr>
</tbody>
</table>

Ausgeschlossene Publikationen (Volltextscreening)

Ausschlussgrund A1: Anderes Thema (nicht Fragestellung)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Jahr</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Parekh, D. Dodwell, N. Sharma and A. M. Shaaban</td>
<td>2015</td>
<td>Radiological and Pathological Predictors of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Brief Literature Review</td>
</tr>
</tbody>
</table>

Ausschlussgrund A3: Andere Kontrolle (nicht PICO)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Jahr</th>
<th>Titel</th>
</tr>
</thead>
</table>

Ausschlussgrund A4: Anderes Outcome (nicht PICO)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Jahr</th>
<th>Titel</th>
</tr>
</thead>
</table>

V. J. Suman, M. J. Ellis and C. X. Ma, 2015: The ALTERNATE trial: assessing a biomarker driven strategy for the treatment of post-menopausal women with ER+/Her2- invasive breast cancer

Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

F. Andre, M. Arnedos, A. Goubar, A. Ghouadni and S. Delaloge, 2015: Ki67--no evidence for its use in node-positive breast cancer

C. Denkert, J. Budczies, G. von Minckwitz, S. Wienert, S. Loibl and F. Klauschen, 2015: Strategies for developing Ki67 as a useful biomarker in breast cancer

Z. Kos and D. J. Dabbs, 2016: Biomarker assessment and molecular testing for prognostication in breast cancer

N. Arima, R. Nishimura, T. Osako, Y. Nishiyama, M. Fujisue, Y. Okumura, M. Nakano, R. Tashima and Y. Toyozumi, 2016: A Comparison of the Hot Spot and the Average Cancer Cell Counting Methods and the Optimal Cutoff Point of the Ki-67 Index for Luminal Type Breast Cancer

M. Ekholm, D. Grabau, P. O. Bendahl, J. Bergh, G. Elmberger, H. Olsson, L. Russo, G. Viale and M. Ferno, 2015: Highly reproducible results of breast cancer biomarkers when analysed in accordance with national guidelines - a Swedish survey with central re-assessment

Ausschlussgrund A6: Doppelpublikation, veraltete Publikation (nicht wie zeitl. Einschränkung)

Recherchestrategien

Tabelle 55: Recherchestrategie SF 4.6-1,2,3 in MEDLINE (via Ovid) (13. Juli 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*Dose Fractionation/</td>
</tr>
<tr>
<td>2</td>
<td>*Breast Neoplasms/rt [Radiotherapy]</td>
</tr>
<tr>
<td>3</td>
<td>Radiotherapy, Adjuvant/</td>
</tr>
<tr>
<td>4</td>
<td>Radiotherapy, Intensity-Modulated/ or Radiotherapy/ or Radiotherapy Dosage/</td>
</tr>
<tr>
<td>5</td>
<td>*Dose Hypofractionation/</td>
</tr>
<tr>
<td>6</td>
<td>*Radiation Oncology/</td>
</tr>
<tr>
<td>7</td>
<td>*Brachytherapy/</td>
</tr>
<tr>
<td>8</td>
<td>Axilla/</td>
</tr>
<tr>
<td>9</td>
<td>*Radiotherapy, dosage/</td>
</tr>
<tr>
<td>10</td>
<td>Lymph Nodes/</td>
</tr>
<tr>
<td>11</td>
<td>Lymphatic Metastasis/rt [Radiotherapy]</td>
</tr>
<tr>
<td>12</td>
<td>(hypofractiona* or "HFRT" or boost or radiation dos* or axilla* radiation).ti,ab,kw.</td>
</tr>
<tr>
<td>13</td>
<td>1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11</td>
</tr>
<tr>
<td>14</td>
<td>12 and 13</td>
</tr>
<tr>
<td>15</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>16</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>17</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>18</td>
<td>16 and 17</td>
</tr>
<tr>
<td>19</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumo?r or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>20</td>
<td>15 or 18 or 19</td>
</tr>
<tr>
<td>21</td>
<td>14 and 20</td>
</tr>
<tr>
<td>22</td>
<td>limit 21 to english</td>
</tr>
<tr>
<td>23</td>
<td>limit 21 to german</td>
</tr>
<tr>
<td>24</td>
<td>22 or 23</td>
</tr>
<tr>
<td>25</td>
<td>limit 24 to yr="2011 -Current"</td>
</tr>
<tr>
<td>26</td>
<td>Randomized Controlled Trials as Topic/</td>
</tr>
<tr>
<td>27</td>
<td>randomized controlled trial/</td>
</tr>
<tr>
<td>28</td>
<td>Random Allocation/</td>
</tr>
<tr>
<td>29</td>
<td>Single Blind Method/</td>
</tr>
<tr>
<td>30</td>
<td>clinical trial/</td>
</tr>
<tr>
<td>31</td>
<td>clinical trial, phase i.pt.</td>
</tr>
<tr>
<td>32</td>
<td>clinical trial, phase ii.pt.</td>
</tr>
<tr>
<td>33</td>
<td>clinical trial, phase iii.pt.</td>
</tr>
<tr>
<td>34</td>
<td>clinical trial, phase iv.pt.</td>
</tr>
<tr>
<td>35</td>
<td>controlled clinical trial.pt.</td>
</tr>
<tr>
<td>36</td>
<td>randomized controlled trial.pt.</td>
</tr>
<tr>
<td>37</td>
<td>multicenter study.pt.</td>
</tr>
<tr>
<td>38</td>
<td>clinical trial.pt.</td>
</tr>
<tr>
<td>39</td>
<td>exp Clinical Trials as topic/</td>
</tr>
<tr>
<td>40</td>
<td>Double Blind Method/</td>
</tr>
<tr>
<td>41</td>
<td>26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40</td>
</tr>
<tr>
<td>42</td>
<td>(clinical adj trial$).tw.</td>
</tr>
<tr>
<td>43</td>
<td>((singl$ or doubl$ or treb$ or tripl$) adj (blind$3 or mask$3)).tw.</td>
</tr>
<tr>
<td>44</td>
<td>PLACEBOS/</td>
</tr>
<tr>
<td>45</td>
<td>placebo$tw.</td>
</tr>
<tr>
<td>46</td>
<td>randomly allocated.tw.</td>
</tr>
<tr>
<td>47</td>
<td>(allocated adj2 random$).tw.</td>
</tr>
<tr>
<td>48</td>
<td>42 or 43 or 44 or 45 or 46 or 47</td>
</tr>
<tr>
<td>49</td>
<td>41 or 48</td>
</tr>
<tr>
<td>50</td>
<td>case report.tw.</td>
</tr>
<tr>
<td>51</td>
<td>letter/</td>
</tr>
<tr>
<td>52</td>
<td>historical article/</td>
</tr>
<tr>
<td>53</td>
<td>50 or 51 or 52</td>
</tr>
<tr>
<td>54</td>
<td>49 not 53</td>
</tr>
<tr>
<td>55</td>
<td>Meta-Analysis as Topic/</td>
</tr>
<tr>
<td>56</td>
<td>meta analy$tw.</td>
</tr>
<tr>
<td>57</td>
<td>metaanaly$tw.</td>
</tr>
<tr>
<td>58</td>
<td>Meta-Analysis/</td>
</tr>
<tr>
<td>59</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td>60</td>
<td>exp Review Literature as Topic/</td>
</tr>
<tr>
<td>61</td>
<td>or/55-60</td>
</tr>
<tr>
<td>62</td>
<td>cochrane.ab.</td>
</tr>
<tr>
<td>63</td>
<td>embase.ab.</td>
</tr>
<tr>
<td>64</td>
<td>(psychlit or psyclit).ab.</td>
</tr>
<tr>
<td>65</td>
<td>(psychinfo or psycinfo).ab.</td>
</tr>
<tr>
<td>66</td>
<td>(cinahl or cinhal).ab.</td>
</tr>
<tr>
<td>67</td>
<td>science citation index.ab.</td>
</tr>
<tr>
<td>68</td>
<td>bids.ab.</td>
</tr>
<tr>
<td>69</td>
<td>cancerlit.ab.</td>
</tr>
<tr>
<td>70</td>
<td>or/62-69</td>
</tr>
<tr>
<td>71</td>
<td>reference list$.ab.</td>
</tr>
<tr>
<td>72</td>
<td>bibliograph$.ab.</td>
</tr>
<tr>
<td>73</td>
<td>hand-search$.ab.</td>
</tr>
<tr>
<td>74</td>
<td>relevant journals.ab.</td>
</tr>
<tr>
<td>75</td>
<td>manual search$.ab.</td>
</tr>
<tr>
<td>76</td>
<td>or/71-75</td>
</tr>
<tr>
<td>77</td>
<td>selection criteria.ab.</td>
</tr>
<tr>
<td>78</td>
<td>data extraction.ab.</td>
</tr>
</tbody>
</table>

Ein- und Ausschlusskriterien

Tabelle 56: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 4.6-1,2,3)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Ausschlussgründe</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>A1: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>A2: Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>A3: Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>A4: Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td></td>
</tr>
</tbody>
</table>
Einschlussgründe

| A6 | Doppelpublikation oder aktuellere Publikation vorhanden; ggf. zu alte Publikation |

Ergebnisse der Recherche

Abbildung 8: Grafische Darstellung der Ergebnisse der Recherche SF 4.6-1,2,3 (Flussdiagramm)
Eingeschlossene Publikationen

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Lehman, B. E. Hickey, D. P. Francis and A. M. See</td>
<td>2014: Partial breast irradiation for early breast cancer</td>
</tr>
<tr>
<td>B. E. Hickey, M. L. James, M. Lehman, P. N. Hider, M. Jeffery, D. P. Francis and A. M. See</td>
<td>2016: Fraction size in radiation therapy for breast conservation in early breast cancer</td>
</tr>
</tbody>
</table>

Ausgeschlossene Publikationen (Volltextscreening)

Ausschlussgrund A1: Anderes Thema (nicht Fragestellung)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Hau, L. H. Browne, S. Khanna, S. Cail, G. Cert, Y. Chin, C. Clark, S. Inder, A. Szwajcer and P. H. Graham</td>
<td>2012: Radiotherapy breast boost with reduced whole-breast dose is associated with improved cosmesis: the results of a comprehensive assessment from the St. George and Wollongong randomized breast boost trial</td>
</tr>
</tbody>
</table>

M. B. Mukesh, E. Harris, S. Collette, C. E. Coles, H. Bartelink, J. Wilkinson, P. M. Evans, P. Graham, J. Haviland, P. Poortmans, J. Yarnold and R. Jena, 2013: Normal tissue complication probability (NTCP) parameters for breast fibrosis: pooled results from two randomised trials

Ausschlussgrund A3: Andere Kontrolle (nicht PICO)

Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

M. Dore, B. Cutuli, P. Cellier, L. Campion and M. Le Blanc, 2015: Hypofractionated irradiation in elderly patients with breast cancer after breast conserving surgery and mastectomy: Analysis of 205 cases

A. Strom, W. Tereffe, W. A. Woodward, J. Ensor., 2015: Acute and Short-term Toxic Effects of Conventionally Fractionated vs Hypofractionated Whole-Breast Irradiation: A Randomized Clinical Trial

W. Budach, E. Bolke and C. Matuschek, 2015: Hypofractionated Radiotherapy as Adjuvant Treatment in Early Breast Cancer. A Review and Meta-Analysis of Randomized Controlled Trials

C. Polgár, J. Fodor, T. Major, Z. Sulyok and M. Kásler, 2013: Breast-conserving therapy with partial or whole breast irradiation: ten-year results of the Budapest randomized trial

Y. Tsang, J. Haviland, K. Venables and J. Yarnold, 2012: The impact of dose heterogeneity on late normal tissue complication risk after hypofractionated whole breast radiotherapy

| Joseph, 2011: Long-term results of targeted intraoperative radiotherapy (Targit) boost during breast-conserving surgery |
| B. Yang, X. D. Wei, Y. T. Zhao and C. M. Ma, 2014: Dosimetric evaluation of integrated IMRT treatment of the chest wall and supraclavicular region for breast cancer after modified radical mastectomy |
Kapitel 4.7.5 Antikörpertherapie

Recherchestrategie

Tabelle 57: Recherchestrategie SF 4.7.5-1,2 in MEDLINE (via Ovid) (24. August 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>2</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>3</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>4</td>
<td>2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metastasi* or neoplasm* or tumo?r or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>6</td>
<td>1 or 4 or 5</td>
</tr>
<tr>
<td>7</td>
<td>("HER2-positive" or "HER2-(+)").ti,ab,kw.</td>
</tr>
<tr>
<td>8</td>
<td>6 and 7</td>
</tr>
<tr>
<td>9</td>
<td>antibodies, monoclonal, humanized/ or antineoplastic agents/</td>
</tr>
<tr>
<td>10</td>
<td>(antineoplastic or monoclonal antibod*).ti,ab,kw.</td>
</tr>
<tr>
<td>11</td>
<td>9 or 10</td>
</tr>
<tr>
<td>12</td>
<td>trastuzumab/</td>
</tr>
<tr>
<td>13</td>
<td>(trastuzumab or Herceptin or hertin or kadcyla).ti,ab,kw.</td>
</tr>
<tr>
<td>14</td>
<td>12 or 13</td>
</tr>
<tr>
<td>15</td>
<td>11 and 14</td>
</tr>
<tr>
<td>16</td>
<td>8 and 15</td>
</tr>
<tr>
<td>17</td>
<td>limit 16 to yr="2006 -Current"</td>
</tr>
<tr>
<td>18</td>
<td>limit 17 to (english or german)</td>
</tr>
<tr>
<td>19</td>
<td>Meta-Analysis as Topic/</td>
</tr>
<tr>
<td>20</td>
<td>meta analy$.tw.</td>
</tr>
<tr>
<td>21</td>
<td>metanaaly$.tw.</td>
</tr>
<tr>
<td>22</td>
<td>Meta-Analysis/</td>
</tr>
<tr>
<td>23</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td>24</td>
<td>exp Review Literature as Topic/</td>
</tr>
<tr>
<td>25</td>
<td>or/19-24</td>
</tr>
<tr>
<td>26</td>
<td>cochrane.ab.</td>
</tr>
<tr>
<td>27</td>
<td>embase.ab.</td>
</tr>
<tr>
<td>28</td>
<td>(psychlit or psyclit).ab.</td>
</tr>
<tr>
<td>29</td>
<td>(psychinfo or psycinfo).ab.</td>
</tr>
<tr>
<td>30</td>
<td>(cinahl or cinhal).ab.</td>
</tr>
<tr>
<td>31</td>
<td>science citation index.ab.</td>
</tr>
<tr>
<td>32</td>
<td>bids.ab.</td>
</tr>
<tr>
<td>33</td>
<td>cancerlit.ab.</td>
</tr>
<tr>
<td>34</td>
<td>or/26-33</td>
</tr>
</tbody>
</table>
Die Recherche in MEDLINE In Process & Other non-indexed Citations (via Ovid) ergab n=1 Treffer. Für die Recherche in der Cochrane Library (CDSR, DARE) wurde die oben genannte Strategie entsprechend angepasst und die Suche ergab n=23 Treffer in den Datenbanken Cochrane Reviews und Other Reviews.

Ein- und Ausschlusskriterien

Tabelle 58: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 4.7.5-1,2)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Ausschlussgründe</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>Wie in PICO definiert</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>Wie in PICO definiert</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>2006 - Aktuell</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>Deutsch und englisch</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>Wie in PICO definiert</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>Wie in PICO definiert</td>
</tr>
<tr>
<td>A1</td>
<td>andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>A2</td>
<td>Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>A3</td>
<td>Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>A4</td>
<td>Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>A5</td>
<td>Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
</tbody>
</table>
Einschlussgründe

A6 Doppelpublikation oder aktuellere Publikation vorhanden

Ergebnisse der Recherche

Abbildung 9: Grafische Darstellung der Ergebnisse der Recherche SF 4.7.5-1.2 (Flussdiagramm)
Eingeschlossene Publikationen

Q. Zhou, W. Yin, Y. Du and J. Lu, 2014: For or against adjuvant trastuzumab for pT1a-bN0M0 breast cancer patients with HER2-positive tumors: a meta-analysis of published literatures

Ausgeschlossene Publikationen (Volltextscreening)

Ausschlussgrund A1: Andere(s) Zielgruppe/Thema (nicht Fragestellung)

Ausschlussgrund A3: Andere Kontrolle (nicht PICO)

Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

13.5.6. **Kapitel 5.3 Therapie der lokoregionalen Rezidivs**

Recherchestrategien

Tabelle 59: Recherchestrategie SF 5.3-1 in MEDLINE (via Ovid) (29. Juni 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or Breast Neoplasms, Male/ or inflammatory breast neoplasms/</td>
</tr>
<tr>
<td>2</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>3</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>4</td>
<td>2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumor*))).ti,ab,kw.</td>
</tr>
<tr>
<td>6</td>
<td>1 or 4 or 5</td>
</tr>
<tr>
<td>7</td>
<td>Neoplasms, Second Primary/ or Neoplasm Recurrence, Local/ or clavicle/ or recurrence/ or axilla/ or lymph nodes/ or lymphatic metastasis/</td>
</tr>
<tr>
<td>8</td>
<td>(((ipsilateral or contralateral or supraclavicular or internal mamma*) adj3 (lymph* or lymph nod* or metasta*)).ti,ab,kw.</td>
</tr>
<tr>
<td>9</td>
<td>7 and 8</td>
</tr>
<tr>
<td>10</td>
<td>6 and 9</td>
</tr>
<tr>
<td>11</td>
<td>limit 10 to yr="2007 -Current"</td>
</tr>
<tr>
<td>12</td>
<td>limit 11 to english</td>
</tr>
<tr>
<td>13</td>
<td>limit 11 to german</td>
</tr>
<tr>
<td>14</td>
<td>12 or 13</td>
</tr>
<tr>
<td>15</td>
<td>Meta-Analysis as Topic/</td>
</tr>
<tr>
<td>16</td>
<td>meta analy$.tw.</td>
</tr>
<tr>
<td>17</td>
<td>metaanaly$.tw.</td>
</tr>
<tr>
<td>18</td>
<td>Meta-Analysis/</td>
</tr>
<tr>
<td>19</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td>20</td>
<td>exp Review Literature as Topic/</td>
</tr>
<tr>
<td>21</td>
<td>or/15-20</td>
</tr>
<tr>
<td>22</td>
<td>cochrane.ab.</td>
</tr>
<tr>
<td>23</td>
<td>embase.ab.</td>
</tr>
<tr>
<td>24</td>
<td>(psychlit or psyclit).ab.</td>
</tr>
<tr>
<td>25</td>
<td>(psychinfo or psycinfo).ab.</td>
</tr>
<tr>
<td>26</td>
<td>(cinahl or cinhal).ab.</td>
</tr>
<tr>
<td>27</td>
<td>science citation index.ab.</td>
</tr>
<tr>
<td>28</td>
<td>bids.ab.</td>
</tr>
<tr>
<td>29</td>
<td>cancerlit.ab.</td>
</tr>
<tr>
<td>30</td>
<td>or/22-29</td>
</tr>
<tr>
<td>31</td>
<td>reference list$.ab.</td>
</tr>
<tr>
<td>32</td>
<td>bibliograph$.ab.</td>
</tr>
<tr>
<td>33</td>
<td>hand-search$.ab.</td>
</tr>
</tbody>
</table>
Die Recherche in MEDLINE In Process & Other non-indexed Citations (via Ovid) ergab n=0 Treffer. Für die Recherche in den Datenbanken Cochrane Library wurde die oben genannte Strategie entsprechend angepasst und die Suche ergab n=0 Treffer in den Datenbanken Cochrane Reviews und Other Reviews. Die Suche nach DARE Reviews via PubMed Health ergab n=11 Treffer (Publikationen ab 2007).

Tabelle 60: Recherchestrategie SF 5.3-1 in MEDLINE (via Ovid) (29. Juni 2016)

<table>
<thead>
<tr>
<th>Searches</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 breast neoplasms/ or carcinoma, ductal, breast/ or Breast Neoplasms, Male/ or inflammatory breast neoplasms/</td>
<td></td>
</tr>
<tr>
<td>2 breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
<td></td>
</tr>
<tr>
<td>3 Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
<td></td>
</tr>
<tr>
<td>4 2 and 3</td>
<td></td>
</tr>
<tr>
<td>5 (brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumo?r))).ti,ab,kw.</td>
<td></td>
</tr>
<tr>
<td>6 1 or 4 or 5</td>
<td></td>
</tr>
<tr>
<td>7 Neoplasms, Second Primary/ or Neoplasm Recurrence, Local/ or clavicle/ or recurrence/ or axilla/ or lymph nodes/ or lymphatic metastasis/</td>
<td></td>
</tr>
<tr>
<td>8 (ipsilateral or contralateral or supraclavicular or internal mamma*) adj3 (lymph* or lymph nod* or metasta*)).ti,ab,kw.</td>
<td></td>
</tr>
<tr>
<td>9 7 and 8</td>
<td></td>
</tr>
<tr>
<td>10 6 and 9</td>
<td></td>
</tr>
</tbody>
</table>
Anzahl der Treffer: n=20

<table>
<thead>
<tr>
<th>Ausdruck</th>
<th>Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 and 43</td>
<td>44</td>
</tr>
<tr>
<td>38 not 42</td>
<td>43</td>
</tr>
<tr>
<td>39 or 40 or 41</td>
<td>42</td>
</tr>
<tr>
<td>Hayes article/</td>
<td>41</td>
</tr>
<tr>
<td>letter/</td>
<td>40</td>
</tr>
<tr>
<td>case report/</td>
<td>39</td>
</tr>
<tr>
<td>30 or 32</td>
<td>38</td>
</tr>
<tr>
<td>31 or 32 or 34 or 35 or 36</td>
<td>37</td>
</tr>
<tr>
<td>allocates/(blended) tw.</td>
<td>36</td>
</tr>
<tr>
<td>randomly allocated/tw.</td>
<td>35</td>
</tr>
<tr>
<td>placebo/</td>
<td>34</td>
</tr>
<tr>
<td>RANDOMIZED CONTROLLED TRIALS/</td>
<td>33</td>
</tr>
<tr>
<td>case report/</td>
<td>32</td>
</tr>
<tr>
<td>15 or 16 or 17 or 18 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29</td>
<td>30</td>
</tr>
<tr>
<td>double blind method/</td>
<td>29</td>
</tr>
<tr>
<td>exp clinical trials as topic/</td>
<td>28</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>multicentre study/pr.</td>
<td>25</td>
</tr>
<tr>
<td>randomized controlled trial/pr.</td>
<td>24</td>
</tr>
<tr>
<td>controlled clinical trial/pr.</td>
<td>23</td>
</tr>
<tr>
<td>clinical trial, phase 4/pr.</td>
<td>22</td>
</tr>
<tr>
<td>clinical trial, phase 3/pr.</td>
<td>21</td>
</tr>
<tr>
<td>clinical trial, phase 2/pr.</td>
<td>20</td>
</tr>
<tr>
<td>clinical trial/</td>
<td>19</td>
</tr>
<tr>
<td>single blind method/</td>
<td>18</td>
</tr>
<tr>
<td>random allocation/</td>
<td>17</td>
</tr>
<tr>
<td>randomized controlled trial/</td>
<td>16</td>
</tr>
<tr>
<td>randomized controlled trials as topic/</td>
<td>15</td>
</tr>
<tr>
<td>14 of 13</td>
<td>14</td>
</tr>
<tr>
<td>limit 11 to 10 german</td>
<td>13</td>
</tr>
<tr>
<td>limit 11 to english</td>
<td>12</td>
</tr>
<tr>
<td>limit 10 to yr=2007 current</td>
<td>11</td>
</tr>
</tbody>
</table>
13.5. Recherchestrategien und Ergebnisse der Recherchen

nach Studien, die bereits Ergebnisse aufweisen (completed und has results), durchsucht. Es wurde n=2 Treffer durch diese Suche identifiziert.
Tabelle 61: Recherchestrategie SF 5.3-1 in MEDLINE (via Ovid) (08. Juli.2016)

<table>
<thead>
<tr>
<th>Searches</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 breast neoplasms/ or carcinoma, ductal, breast/ or Breast Neoplasms, Male/ or inflammatory breast neoplasms/</td>
<td></td>
</tr>
<tr>
<td>2 breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
<td></td>
</tr>
<tr>
<td>3 Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
<td></td>
</tr>
<tr>
<td>4 2 and 3</td>
<td></td>
</tr>
<tr>
<td>5 (brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumo?r))).ti,ab,kw.</td>
<td></td>
</tr>
<tr>
<td>6 1 or 4 or 5</td>
<td></td>
</tr>
<tr>
<td>7 Neoplasms, Second Primary/ or Neoplasm Recurrence, Local/ or clavicle/ or recurrence/ or axilla/ or lymph nodes/ or lymphatic metastasis/</td>
<td></td>
</tr>
<tr>
<td>8 ((ipsilateral or contralateral or supraclavicular or internal mamma*) adj3 (lymph* or lymph nod* or metasta*)).ti,ab,kw.</td>
<td></td>
</tr>
<tr>
<td>9 7 and 8</td>
<td></td>
</tr>
<tr>
<td>10 6 and 9</td>
<td></td>
</tr>
<tr>
<td>11 limit 10 to yr="2007 -Current"</td>
<td></td>
</tr>
<tr>
<td>12 limit 11 to english</td>
<td></td>
</tr>
<tr>
<td>13 limit 11 to german</td>
<td></td>
</tr>
<tr>
<td>14 12 or 13</td>
<td></td>
</tr>
<tr>
<td>15 Epidemiologic studies/</td>
<td></td>
</tr>
<tr>
<td>16 exp case control studies/</td>
<td></td>
</tr>
<tr>
<td>17 exp cohort studies/</td>
<td></td>
</tr>
<tr>
<td>18 Case control.tw.</td>
<td></td>
</tr>
<tr>
<td>19 (cohort adj (study or studies)).tw.</td>
<td></td>
</tr>
<tr>
<td>20 Cohort analy$.tw.</td>
<td></td>
</tr>
<tr>
<td>21 (Follow up adj (study or studies)).tw.</td>
<td></td>
</tr>
<tr>
<td>22 (observational adj (study or studies)).tw.</td>
<td></td>
</tr>
<tr>
<td>23 Longitudinal.tw.</td>
<td></td>
</tr>
<tr>
<td>24 Retrospective.tw.</td>
<td></td>
</tr>
<tr>
<td>25 Cross sectional.tw.</td>
<td></td>
</tr>
<tr>
<td>26 Cross-sectional studies/</td>
<td></td>
</tr>
<tr>
<td>27 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26</td>
<td></td>
</tr>
<tr>
<td>28 14 and 27</td>
<td></td>
</tr>
</tbody>
</table>

Anzahl der Treffer: n=91

Die Recherche in MEDLINE In Process & Other non-indexed Citations (via Ovid) ergab n=0 Treffer
Ein- und Ausschlusskriterien

Tabelle 62: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 5.3-1)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>Wie PICO</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>Systematische Übersichtsarbeiten, RCTs, Observational Studies</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>2007 - Aktuell</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>Wie PICO</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>Wie PICO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausschlussgründe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>A2</td>
<td>Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>A3</td>
<td>Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>A4</td>
<td>Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>A5</td>
<td>Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>A6</td>
<td>Doppelpublikation oder aktuellere Publikation vorhanden; ggf. zu alte Publikation</td>
</tr>
</tbody>
</table>
Ergebnisse der Recherche

Abbildung 10: Grafische Darstellung der Ergebnisse der Recherche SF 5.3-1 (Flussdiagramm)
Eingeschlossene Publikationen

<table>
<thead>
<tr>
<th>Autorinnen/Autor(en)</th>
<th>Titel</th>
</tr>
</thead>
</table>

Ausschlußgründen (Volltextscreening)

Ausschlußgrund A1: Anderes Thema (nicht Fragestellung)

<table>
<thead>
<tr>
<th>Autorinnen/Autor(en)</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Wang, P. Yuan, J. Wang, F. Ma, P. Zhang, Q. Li und B. Xu, 2014</td>
<td>Management of contralateral axillary lymph node metastasis from breast cancer: a clinical dilemma</td>
</tr>
<tr>
<td>V. Fulga, L. Rudico, A. R. Balica, A. M. Cimpean, L. Saptefrati und M. Raica, 2015</td>
<td>Invasive ductal carcinoma of no special type and its corresponding lymph node metastasis: do they have the same immunophenotypic profile?</td>
</tr>
<tr>
<td>S. Lanitis, K. A. Behranwala, R. Al-Mufti und D. Hadjiminias, 2009</td>
<td>Axillary metastatic disease as presentation of occult or contralateral breast cancer</td>
</tr>
<tr>
<td>P. Kaur, J. V. Kiluk, T. Meade, D. Ramos, W. Koeppel, J. Jara, J. King und C. E. Cox, 2011</td>
<td>Sentinel lymph node biopsy in patients with previous ipsilateral complete axillary lymph node dissection</td>
</tr>
</tbody>
</table>

Ausschlußgrund A2: Andere Intervention (nicht PICO)

<table>
<thead>
<tr>
<th>Autorinnen/Autor(en)</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. Fan, B. Xu, Y. Liao, S. Yao und Y. Sun, 2010</td>
<td>A retrospective study of metachronous and synchronous ipsilateral supraclavicular lymph node metastases in breast cancer patients</td>
</tr>
</tbody>
</table>
Ausschlussgrund A3: Andere Kontrolle (nicht PICO)

X. Z. Chang, J. Yin, J. Sun, X. H. Zhang and X. C. Cao, 2013: A retrospective study of different local treatments in breast cancer patients with synchronous ipsilateral supraclavicular lymph node metastasis

Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

Kapitel 5.4 Fernmetastasen

Recherchestrategien

Tabelle 63: Recherchestrategie SF 5.4-1 in MEDLINE (via Ovid) (06. April 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>2</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>3</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>4</td>
<td>2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumo?r or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>6</td>
<td>1 or 4 or 5</td>
</tr>
<tr>
<td>7</td>
<td>Meta-Analysis as Topic/</td>
</tr>
<tr>
<td>8</td>
<td>meta analy$.tw.</td>
</tr>
<tr>
<td>9</td>
<td>metaanaly$.tw.</td>
</tr>
<tr>
<td>10</td>
<td>Meta-Analysis/</td>
</tr>
<tr>
<td>11</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td>12</td>
<td>exp Review Literature as Topic/</td>
</tr>
<tr>
<td>13</td>
<td>or/7-12</td>
</tr>
<tr>
<td>14</td>
<td>cochrane.ab.</td>
</tr>
<tr>
<td>15</td>
<td>embase.ab.</td>
</tr>
<tr>
<td>16</td>
<td>(psychlit or psyclit).ab.</td>
</tr>
<tr>
<td>17</td>
<td>(psychinfo or psycinfo).ab.</td>
</tr>
<tr>
<td>18</td>
<td>(cinahl or cinhal).ab.</td>
</tr>
<tr>
<td>19</td>
<td>science citation index.ab.</td>
</tr>
<tr>
<td>20</td>
<td>bids.ab.</td>
</tr>
<tr>
<td>21</td>
<td>cancerlit.ab.</td>
</tr>
<tr>
<td>22</td>
<td>or/14-21</td>
</tr>
<tr>
<td>23</td>
<td>reference list$.ab.</td>
</tr>
<tr>
<td>24</td>
<td>bibliograph$.ab.</td>
</tr>
<tr>
<td>25</td>
<td>hand-search$.ab.</td>
</tr>
<tr>
<td>26</td>
<td>relevant journals.ab.</td>
</tr>
<tr>
<td>27</td>
<td>manual search$.ab.</td>
</tr>
<tr>
<td>28</td>
<td>or/23-27</td>
</tr>
<tr>
<td>29</td>
<td>selection criteria.ab.</td>
</tr>
<tr>
<td>30</td>
<td>data extraction.ab.</td>
</tr>
<tr>
<td>31</td>
<td>29 or 30</td>
</tr>
<tr>
<td>32</td>
<td>Review/</td>
</tr>
<tr>
<td>33</td>
<td>31 or 32</td>
</tr>
<tr>
<td>34</td>
<td>Comment/</td>
</tr>
<tr>
<td>35</td>
<td>Letter/</td>
</tr>
<tr>
<td>36</td>
<td>Editorial/</td>
</tr>
</tbody>
</table>
13.5. Recherchestrategien und Ergebnisse der Recherchen

37	animal/
38	human/
39	37 not (37 and 38)
40	or/34-36,39
41	13 or 22 or 28 or 33
42	41 not 40
43	therapeutics/ or biological therapy/ or combined modality therapy/ or drug therapy/ or Enzyme Therapy/ or aromatase inhibitors/ or topoisomerase inhibitors/ or estrogen antagonists/ or estrogen receptor antagonists/ or estrogen receptor modulators/
44	Antineoplastic Agents/dt, tu [Drug Therapy, Therapeutic Use]
45	43 or 44
46	(regim* or intervention* or treat* or therap* or pharmacotherap*).ti,ab,kw.
47	("anti tumor" or "anti tumour" or antineoplastic or drug or prodrug* or chemo or "anti hormone" or "anti hormones" or enzyme* or systemic or endocr* or enzyme blocker or aromatase inhibitor* or "LHRH agonist" or "Luteinising hormone releasing hormone" or (estrogen or oestrogen and receptor*)).ti,ab,kw.
48	46 and 47
49	("endocrine therapy" or "endocrine therapies" or chemotherapy*).ti,ab,kw.
50	45 or 48 or 49
51	brain/
52	(brain* or head* or metasta* or spread*).ti,ab,kw.
53	51 or 52
54	*Neoplasm Metastasis/
55	53 and 54
56	(brain metasta* or CNS metasta* or cerebral metasta*).ti,ab,kw.
57	Brain Neoplasms/sc, th
58	55 or 56 or 57
59	6 and 58
60	50 and 59
61	42 and 60
62	limit 61 to yr="2007 -Current"
63	limit 62 to english
64	limit 62 to german

Anzahl der Treffer: n=166

Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations Datenbank ergab n=6 Treffer. Die Recherchestrategie wurde für die Cochrane Library (CDSR) entsprechend modifiziert und die Suche ergab n=18 Treffer (Cochrane Reviews und Other Reviews). Die Suche nach DARE Reviews (via PubMed Health) ergab n=15 Treffer ab 2007.
Recherchestrategien nach RCTs

Tabelle 64: Recherchestrategie SF 5.4-1 in MEDLINE (via Ovid) (21. April 2016)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>2</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>3</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>4</td>
<td>2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metastas* or neoplasm* or tumour or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>6</td>
<td>1 or 4 or 5</td>
</tr>
<tr>
<td>7</td>
<td>therapeutics/ or biological therapy/ or combined modality therapy/ or drug therapy/ or Enzyme Therapy/ or aromatase inhibitors/ or topoisomerase inhibitors/ or estrogen antagonists/ or estrogen receptor antagonists/ or estrogen receptor modulators/</td>
</tr>
<tr>
<td>8</td>
<td>Antineoplastic Agents/dt, tu [Drug Therapy, Therapeutic Use]</td>
</tr>
<tr>
<td>9</td>
<td>7 or 8</td>
</tr>
<tr>
<td>10</td>
<td>(regim* or intervention* or treat* or therap* or pharmacotherap*).ti,ab,kw.</td>
</tr>
<tr>
<td>11</td>
<td>("anti tumor" or "anti tumour" or antineoplastic or drug or prodrug* or chemo or "anti hormone" or "anti hormones" or enzyme* or systemic or endocr* or enzyme blocker or aromatase inhibitor* or "LHRH agonist" or "Luteinising hormone releasing hormone" or ((estrogen or oestrogen) and receptor*)).ti,ab,kw.</td>
</tr>
<tr>
<td>12</td>
<td>10 and 11</td>
</tr>
<tr>
<td>13</td>
<td>("endocrine therapy" or "endocrine therapies" or chemotherapy*).ti,ab,kw.</td>
</tr>
<tr>
<td>14</td>
<td>9 or 12 or 13</td>
</tr>
<tr>
<td>15</td>
<td>brain/</td>
</tr>
<tr>
<td>16</td>
<td>(brain* or head* or metastas* or spread*).ti,ab,kw.</td>
</tr>
<tr>
<td>17</td>
<td>15 or 16</td>
</tr>
<tr>
<td>18</td>
<td>"Neoplasm Metastasis/</td>
</tr>
<tr>
<td>19</td>
<td>17 and 18</td>
</tr>
<tr>
<td>20</td>
<td>(brain metastas* or CNS metastas* or cerebral metastas*).ti,ab,kw.</td>
</tr>
<tr>
<td>21</td>
<td>Brain Neoplasms/sc, th</td>
</tr>
<tr>
<td>22</td>
<td>19 or 20 or 21</td>
</tr>
<tr>
<td>23</td>
<td>6 and 22</td>
</tr>
<tr>
<td>24</td>
<td>14 and 23</td>
</tr>
<tr>
<td>25</td>
<td>Randomized Controlled Trials as Topic/</td>
</tr>
<tr>
<td>26</td>
<td>randomized controlled trial/</td>
</tr>
<tr>
<td>27</td>
<td>Random Allocation/</td>
</tr>
<tr>
<td>28</td>
<td>Single Blind Method/</td>
</tr>
<tr>
<td>29</td>
<td>clinical trial/</td>
</tr>
<tr>
<td>30</td>
<td>clinical trial, phase i.pt.</td>
</tr>
<tr>
<td>31</td>
<td>clinical trial, phase ii.pt.</td>
</tr>
<tr>
<td>32</td>
<td>clinical trial, phase iii.pt.</td>
</tr>
<tr>
<td>33</td>
<td>clinical trial, phase iv.pt.</td>
</tr>
<tr>
<td>34</td>
<td>controlled clinical trial.pt.</td>
</tr>
</tbody>
</table>
Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations Datenbank ergab n=6 Treffer. Die Recherchestrategie wurde für die Cochrane Library (CENTRAL) entsprechend modifiziert und die Suche ergab n=86 Treffer. Zusätzlich wurden die klinischen Register clinicaltrials.gov und EU trials mit den Begriffskombinationen 'metastatic breast cancer AND brain', 'breast cancer AND brain metastases', 'breast cancer AND brain metastasis' nach Studien ab 2015, die bereits Ergebnisse aufweisen (completed und has results/studies with results), durchsucht. Es wurden n=7 Treffer durch diese Suche identifiziert.

Anzahl der Treffer: n=180
Ein- und Ausschlusskriterien

Tabelle 65: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 5.4-1)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Ausschlussgründe</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>A1: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>A2: Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>A3: Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>A4: Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>A6: Doppelpublikation oder aktuellere Publikation vorhanden</td>
</tr>
<tr>
<td>Systematische Übersichtsarbeiten, RCTs</td>
<td></td>
</tr>
<tr>
<td>2007 – Aktuell</td>
<td></td>
</tr>
<tr>
<td>Deutsch und Englisch</td>
<td></td>
</tr>
<tr>
<td>Wie PICO</td>
<td></td>
</tr>
<tr>
<td>Wie PICO</td>
<td></td>
</tr>
<tr>
<td>Wie PICO</td>
<td></td>
</tr>
</tbody>
</table>
Ergebnisse der Recherche

Abbildung 11: Grafische Darstellung der Ergebnisse der Recherche SF 5.4-1 (Flussdiagramm)
Eingeschlossene Publikationen

Ausgeschlossene Publikationen (Volltextscreening)

Ausschlussgrund A1: Anderes Thema (nicht Fragestellung)

<table>
<thead>
<tr>
<th>Autor/Institut</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Liu, X. Wang, B. Ma, K. Yang, Q. Zhang and J. Tian, 2010</td>
<td>Concomitant or adjuvant temozolomide with whole-brain irradiation for brain metastases: a meta-analysis</td>
</tr>
<tr>
<td>J. Ro, S. Park, S. Kim, T. Y. Kim, Y. H. Im, S. Y. Rha, J. S. Chung, H. Moon and S. Santillana, 2012</td>
<td>Clinical outcomes of HER2-positive metastatic breast cancer patients with brain metastasis treated with lapatinib and capecitabine: an open-label expanded access study in Korea</td>
</tr>
<tr>
<td>S. M. Swain, J. Baselga, D. Miles, Y. H. Im, C. Quah, L. F. Lee and J. Cortés, 2014</td>
<td>Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: results from the randomized phase III study CLEOPATRA</td>
</tr>
</tbody>
</table>

Ausschlussgrund A2: Andere Intervention (nicht PICO)

<table>
<thead>
<tr>
<th>Autor/Institut</th>
<th>Titel</th>
</tr>
</thead>
</table>
Ausschlussgrund A3: Andere Kontrolle (nicht PICO)

<table>
<thead>
<tr>
<th>Autor</th>
<th>Titel</th>
<th>Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. J. Bowater, P. E. Lilford and R. J. Lilford, 2011:</td>
<td>Estimating changes in overall survival using progression-free survival in metastatic breast and colorectal cancer</td>
<td></td>
</tr>
<tr>
<td>Q. Li, H. Yan, P. Zhao, Y. Yang und B. Cao, 2015:</td>
<td>Efficacy and Safety of Bevacizumab Combined with Chemotherapy for Managing Metastatic Breast Cancer: A Meta-Analysis of Randomized Controlled Trials</td>
<td></td>
</tr>
<tr>
<td>D. Mauri, N. P. Polyzos, G. Salanti, N. Pavlidis und J. P. Ioannidis, 2008:</td>
<td>Multiple-treatments meta-analysis of chemotherapy and targeted therapies in advanced breast cancer</td>
<td></td>
</tr>
<tr>
<td>R. Riemsma, C. A. Forbes, M. M. Amonkar, K. Lykopoulos, J. R. Diaz, J. Kleijnen und D. W. Rea, 2012:</td>
<td>Systematic review of lapatinib in combination with letrozole compared with other first-line treatments for hormone receptor positive(HR+) and HER2+ advanced or metastatic breast cancer(MBC)</td>
<td></td>
</tr>
<tr>
<td>P. B. Larsen, I. Kumler und D. L. Nielsen, 2013:</td>
<td>A systematic review of trastuzumab and lapatinib in the treatment of women with brain metastases from HER2-positive breast cancer</td>
<td></td>
</tr>
</tbody>
</table>
Recherchestrategien und Ergebnisse der Recherchen

© Leitlinienprogramm Onkologie | Leitlinienreport Mammakarzinom | Version 4.1 | August 2019

<table>
<thead>
<tr>
<th>Husselgrund A4: Anderes Outcome (nicht PICO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. F. Eichler and J. S. Loeffler, 2007: Multidisciplinary management of brain metastases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Arslan, O. Dizdar and K. Altundag, 2010: Systemic treatment in breast-cancer patients with brain metastasis</td>
</tr>
<tr>
<td>J. P. Leone and B. A. Leone, 2015: Breast cancer brain metastases: the last frontier</td>
</tr>
<tr>
<td>B. Leyland-Jones, 2009: Human epidermal growth factor receptor 2-positive breast cancer and central nervous system metastases</td>
</tr>
</tbody>
</table>

A. I. Mehta, A. M. Brufsky and J. H. Sampson, 2013: Therapeutic approaches for HER2-positive brain metastases: circumventing the blood-brain barrier

A. Patil and G. V. Sherbet, 2015: Therapeutic approach to the management of HER2-positive breast cancer metastatic to the brain

H. Aoyama, 2011: Radiation therapy for brain metastases in breast cancer patients

M. B. Hemphill and J. A. Lawrence, 2008: Current therapeutic options for breast cancer central nervous system metastases

G. Metro and A. Fabi, 2012: New target therapies for brain metastases from breast cancer

P. Chabot, J. S. Ryu, V. Gorbunova, C. Belda, D. Ball, E. A. Kio, M. Mehta, K. Papp, Q. Qin, J. Qian, K. D. Holen, V. L. Giranda and J. H. Suh, 2015: Results of a randomized, global, multi-center study of whole-brain radiation therapy (WBRT) plus veliparib or placebo in patients (pts) with brain metastases (BM) from non-small cell lung cancer (NSCLC)

E. Lim and N. U. Lin, 2014: Updates on the management of breast cancer brain metastases

<table>
<thead>
<tr>
<th>Autor*innen</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. D. Seidman, 2010</td>
<td>Brain metastases from breast cancer</td>
</tr>
<tr>
<td>R. Soffietti, W. Akerley, R. L. Jensen, J. Bischoff and A. C. Regierer, 2009</td>
<td>The role of intra-cerebrospinal fluid treatment and prophylaxis in patients with solid tumors</td>
</tr>
<tr>
<td>M. S. Ahluwalia and F. Winkler, 2015</td>
<td>Targeted and immunotherapeutic approaches in brain metastases</td>
</tr>
<tr>
<td>S. Hofer and B. C. Pestalozzi, 2013</td>
<td>Treatment of breast cancer brain metastases</td>
</tr>
<tr>
<td>N. U. Lin and E. P. Winer, 2007</td>
<td>Brain metastases: the HER2 paradigm</td>
</tr>
<tr>
<td>E. Lim and N. U. Lin, 2012</td>
<td>New insights and emerging therapies for breast cancer brain metastases</td>
</tr>
</tbody>
</table>

Ausschlussgrund A6: Doppelpublikation, veraltete Publikation

<table>
<thead>
<tr>
<th>Autor*innen</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. B. Larsen, I. Kumler and D. L. Nielsen, 2013</td>
<td>A systematic review of trastuzumab and lapatinib in the treatment of women with brain metastases from HER2-positive breast cancer</td>
</tr>
<tr>
<td>R. Soffietti, W. Akerley, R. L. Jensen, J. Bischoff and A. C. Regierer, 2009</td>
<td>The role of intra-cerebrospinal fluid treatment and prophylaxis in patients with solid tumors</td>
</tr>
</tbody>
</table>
Recherchestrategie

Tabelle 66: Recherchestrategie SF 5.4-2 in MEDLINE (via Ovid) (19. April 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>2</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>3</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>4</td>
<td>2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metastasi* or neoplasm* or tumo?? or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>6</td>
<td>1 or 4 or 5</td>
</tr>
<tr>
<td>7</td>
<td>Liver/</td>
</tr>
<tr>
<td>8</td>
<td>(liver* or hepat* or metastasi* or spread*).ti,ab,kw.</td>
</tr>
<tr>
<td>9</td>
<td>7 or 8</td>
</tr>
<tr>
<td>10</td>
<td>"Neoplasm Metastasis/"</td>
</tr>
<tr>
<td>11</td>
<td>9 and 10</td>
</tr>
<tr>
<td>12</td>
<td>"Liver Neoplasms/sc, th</td>
</tr>
<tr>
<td>13</td>
<td>((liver metastasi* adj2 breast cancer) or isolated liver or "Secondary breast cancer in the liver").tw,ab,kw.</td>
</tr>
<tr>
<td>14</td>
<td>("Non-colorectal" or non colorectal) adj3 liver metastas*).tw,ab,kw.</td>
</tr>
<tr>
<td>15</td>
<td>11 or 12 or 13 or 14</td>
</tr>
<tr>
<td>16</td>
<td>6 and 15</td>
</tr>
<tr>
<td>17</td>
<td>Meta-Analyse as Topic/</td>
</tr>
<tr>
<td>18</td>
<td>meta analy$.tw.</td>
</tr>
<tr>
<td>19</td>
<td>metaanaly$.tw.</td>
</tr>
<tr>
<td>20</td>
<td>Meta-Analyse/</td>
</tr>
<tr>
<td>21</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td>22</td>
<td>exp Review Literature as Topic/</td>
</tr>
<tr>
<td>23</td>
<td>or/17-22</td>
</tr>
<tr>
<td>24</td>
<td>cochrane.ab.</td>
</tr>
<tr>
<td>25</td>
<td>embase.ab.</td>
</tr>
<tr>
<td>26</td>
<td>(psychlit or psyclit).ab.</td>
</tr>
<tr>
<td>27</td>
<td>(psychinfo or psycinfo).ab.</td>
</tr>
<tr>
<td>28</td>
<td>(cinahl or cinhal).ab.</td>
</tr>
<tr>
<td>29</td>
<td>science citation index.ab.</td>
</tr>
<tr>
<td>30</td>
<td>bids.ab.</td>
</tr>
<tr>
<td>31</td>
<td>cancerlit.ab.</td>
</tr>
<tr>
<td>32</td>
<td>or/24-31</td>
</tr>
<tr>
<td>33</td>
<td>reference list$.ab.</td>
</tr>
<tr>
<td>34</td>
<td>bibliograph$.ab.</td>
</tr>
<tr>
<td>35</td>
<td>hand-search$.ab.</td>
</tr>
<tr>
<td>36</td>
<td>relevant journals.ab.</td>
</tr>
</tbody>
</table>
13.5. Recherchestrategien und Ergebnisse der Recherchen

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>manual search$.ab.</td>
</tr>
<tr>
<td>38</td>
<td>or/33-37</td>
</tr>
<tr>
<td>39</td>
<td>selection criteria.ab.</td>
</tr>
<tr>
<td>40</td>
<td>data extraction.ab.</td>
</tr>
<tr>
<td>41</td>
<td>39 or 40</td>
</tr>
<tr>
<td>42</td>
<td>Review/</td>
</tr>
<tr>
<td>43</td>
<td>41 or 42</td>
</tr>
<tr>
<td>44</td>
<td>Comment/</td>
</tr>
<tr>
<td>45</td>
<td>Letter/</td>
</tr>
<tr>
<td>46</td>
<td>Editorial/</td>
</tr>
<tr>
<td>47</td>
<td>animal/</td>
</tr>
<tr>
<td>48</td>
<td>human/</td>
</tr>
<tr>
<td>49</td>
<td>47 not (47 and 48)</td>
</tr>
<tr>
<td>50</td>
<td>or/44-46,49</td>
</tr>
<tr>
<td>51</td>
<td>23 or 32 or 38 or 43</td>
</tr>
<tr>
<td>52</td>
<td>51 not 50</td>
</tr>
<tr>
<td>53</td>
<td>"Embolization, Therapeutic/is, mt, st [Instrumentation, Methods, Standards]</td>
</tr>
<tr>
<td>54</td>
<td>"Radiopharmaceuticals/ad, ae, st, tu [Administration & Dosage, Adverse Effects, Standards, Therapeutic Use]</td>
</tr>
<tr>
<td>55</td>
<td>Yttrium Radioisotopes/ad, ae, re, st, tu [Administration & Dosage, Adverse Effects, Radiation Effects, Standards, Therapeutic Use]</td>
</tr>
<tr>
<td>56</td>
<td>("Intra-arterial" or intraarterial or embolization* or Radioembolization or "Selective internal radiation" or Transarterial or "Yttrium-90" or laser* or microwave* or radiofrequenc*).tw,ab,kw.</td>
</tr>
<tr>
<td>57</td>
<td>(regim* or intervention* or treat* or therap* or ablation* or technique*).ti,ab,kw.</td>
</tr>
<tr>
<td>58</td>
<td>("image-guided tumor ablation" or chemoperfusion or TACP or chemoembolization or TACE or radioembolization or selective internal radiation therap* or SIRT or chemosaturation or thermal ablation* or microwave ablation* or MWA or radiofrequenc* ablation or RFA or "laser-induced thermotherap*" or LITT or cryotherap* or irreversible electroproportion or IRE).tw,ab,kw.</td>
</tr>
<tr>
<td>59</td>
<td>"Radiation/ad, mt, th [Administration & Dosage, Methods, Therapy]</td>
</tr>
<tr>
<td>60</td>
<td>"Hyperthermia, Induced/is, mt, td [Instrumentation, Methods, Trends]</td>
</tr>
<tr>
<td>61</td>
<td>53 or 54 or 55 or 59 or 60</td>
</tr>
<tr>
<td>62</td>
<td>56 and 57</td>
</tr>
<tr>
<td>63</td>
<td>58 or 61 or 62</td>
</tr>
<tr>
<td>64</td>
<td>"General Surgery/mt, su [Methods, Surgery]</td>
</tr>
<tr>
<td>65</td>
<td>"Liver Neoplasms/rt, su [Radiotherapy, Surgery]</td>
</tr>
<tr>
<td>66</td>
<td>63 or 64 or 65</td>
</tr>
<tr>
<td>67</td>
<td>16 and 66</td>
</tr>
<tr>
<td>68</td>
<td>52 and 67</td>
</tr>
<tr>
<td>69</td>
<td>limit 68 to yr="2007 -Current"</td>
</tr>
<tr>
<td>70</td>
<td>limit 69 to english</td>
</tr>
<tr>
<td>71</td>
<td>limit 69 to german</td>
</tr>
<tr>
<td>72</td>
<td>70 or 71</td>
</tr>
</tbody>
</table>
Anzahl der Treffer: n=28
Tab. 67: Recherchestrategie SF 5.4-2 in MEDLINE (via Ovid) (12. Mai 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or ”hereditary breast and ovarian cancer syndrome”/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>2</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>3</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>4</td>
<td>2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumo?r or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>6</td>
<td>1 or 4 or 5</td>
</tr>
<tr>
<td>7</td>
<td>Liver/</td>
</tr>
<tr>
<td>8</td>
<td>(liver* or hepat* or metasta* or spread*).ti,ab,kw.</td>
</tr>
<tr>
<td>9</td>
<td>7 or 8</td>
</tr>
<tr>
<td>10</td>
<td>*Neoplasm Metastasis/</td>
</tr>
<tr>
<td>11</td>
<td>9 and 10</td>
</tr>
<tr>
<td>12</td>
<td>*Liver Neoplasms/sc, th</td>
</tr>
<tr>
<td>13</td>
<td>(liver metast* adj2 breast cancer) or isolated liver or ”Secondary breast cancer in the liver”).tw,ab,kw.</td>
</tr>
<tr>
<td>14</td>
<td>(”Non-colorectal” or non colorectal) adj3 liver metastas*).tw,ab,kw.</td>
</tr>
<tr>
<td>15</td>
<td>11 or 12 or 13 or 14</td>
</tr>
<tr>
<td>16</td>
<td>6 and 15</td>
</tr>
<tr>
<td>17</td>
<td>*Embolization, Therapeutic/is, mt, st [Instrumentation, Methods, Standards]</td>
</tr>
<tr>
<td>18</td>
<td>*Radiopharmaceuticals/ad, ae, st, tu [Administration & Dosage, Adverse Effects, Standards, Therapeutic Use]</td>
</tr>
<tr>
<td>19</td>
<td>Yttrium Radioisotopes/ad, ae, re, st, tu [Administration & Dosage, Adverse Effects, Radiation Effects, Standards, Therapeutic Use]</td>
</tr>
<tr>
<td>20</td>
<td>(”Intra-arterial” or intraarterial or embolization* or Radioembolization or ”Selective internal radiation” or Transarterial or ”Yttrium-90” or laser* or microwave* or radiofrequenc*).tw,ab,kw.</td>
</tr>
<tr>
<td>21</td>
<td>(regim* or intervention* or treat* or therap* or ablation* or technique*).ti,ab,kw.</td>
</tr>
<tr>
<td>22</td>
<td>(”image-guided tumor ablation” or chemoperfusion or TACP or chemoembolization or TACE or radioembolization or selective internal radiation therap* or SIRT or chemosaturation or thermal ablation* or microwave ablation* or MWA or radiofrequenc* ablation or RFA or ”laser-induced thermothrapia” or LITT or cryotherap* or irreversible electroporation or IRE).tw,ab,kw.</td>
</tr>
<tr>
<td>23</td>
<td>*Radiation/ad, mt, th [Administration & Dosage, Methods, Therapy]</td>
</tr>
<tr>
<td>24</td>
<td>*Hyperthermia, Induced/is, mt, td [Instrumentation, Methods, Trends]</td>
</tr>
<tr>
<td>25</td>
<td>17 or 18 or 19 or 23 or 24</td>
</tr>
<tr>
<td>26</td>
<td>20 and 21</td>
</tr>
<tr>
<td>27</td>
<td>22 or 25 or 26</td>
</tr>
<tr>
<td>28</td>
<td>*General Surgery/mt, su [Methods, Surgery]</td>
</tr>
<tr>
<td>29</td>
<td>*Liver Neoplasms/rt, su [Radiotherapy, Surgery]</td>
</tr>
<tr>
<td>30</td>
<td>27 or 28 or 29</td>
</tr>
<tr>
<td>31</td>
<td>16 and 30</td>
</tr>
<tr>
<td>32</td>
<td>Randomized Controlled Trials as Topic/</td>
</tr>
<tr>
<td>33</td>
<td>randomized controlled trial/</td>
</tr>
<tr>
<td>34</td>
<td>Random Allocation/</td>
</tr>
<tr>
<td>35</td>
<td>Single Blind Method/</td>
</tr>
<tr>
<td>36</td>
<td>clinical trial/</td>
</tr>
<tr>
<td>37</td>
<td>clinical trial, phase i.pt.</td>
</tr>
<tr>
<td>38</td>
<td>clinical trial, phase ii.pt.</td>
</tr>
<tr>
<td>39</td>
<td>clinical trial, phase iii.pt.</td>
</tr>
<tr>
<td>40</td>
<td>clinical trial, phase iv.pt.</td>
</tr>
<tr>
<td>41</td>
<td>controlled clinical trial.pt.</td>
</tr>
<tr>
<td>42</td>
<td>randomized controlled trial.pt.</td>
</tr>
<tr>
<td>43</td>
<td>multicenter study.pt.</td>
</tr>
<tr>
<td>44</td>
<td>clinical trial.pt.</td>
</tr>
<tr>
<td>45</td>
<td>exp Clinical Trials as topic/</td>
</tr>
<tr>
<td>46</td>
<td>Double Blind Method/</td>
</tr>
<tr>
<td>47</td>
<td>32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46</td>
</tr>
<tr>
<td>48</td>
<td>(clinical adj trial$).tw.</td>
</tr>
<tr>
<td>49</td>
<td>((singl$ or doubl$ or treb$ or tripl$) adj (blind$3 or mask$3)).tw.</td>
</tr>
<tr>
<td>50</td>
<td>PLACEBOS/</td>
</tr>
<tr>
<td>51</td>
<td>placebo$.tw.</td>
</tr>
<tr>
<td>52</td>
<td>randomly allocated.tw.</td>
</tr>
<tr>
<td>53</td>
<td>(allocated adj2 random$).tw.</td>
</tr>
<tr>
<td>54</td>
<td>48 or 49 or 50 or 51 or 52 or 53</td>
</tr>
<tr>
<td>55</td>
<td>47 or 54</td>
</tr>
<tr>
<td>56</td>
<td>case report.tw.</td>
</tr>
<tr>
<td>57</td>
<td>letter/</td>
</tr>
<tr>
<td>58</td>
<td>historical article/</td>
</tr>
<tr>
<td>59</td>
<td>56 or 57 or 58</td>
</tr>
<tr>
<td>60</td>
<td>55 not 59</td>
</tr>
<tr>
<td>61</td>
<td>Epidemiologic studies/</td>
</tr>
<tr>
<td>62</td>
<td>exp case control studies/</td>
</tr>
<tr>
<td>63</td>
<td>exp cohort studies/</td>
</tr>
<tr>
<td>64</td>
<td>Case control.tw.</td>
</tr>
<tr>
<td>65</td>
<td>(cohort adj (study or studies)).tw.</td>
</tr>
<tr>
<td>66</td>
<td>Cohort analy$.tw.</td>
</tr>
<tr>
<td>67</td>
<td>(Follow up adj (study or studies)).tw.</td>
</tr>
<tr>
<td>68</td>
<td>(observational adj (study or studies)).tw.</td>
</tr>
<tr>
<td>69</td>
<td>Longitudinal.tw.</td>
</tr>
<tr>
<td>70</td>
<td>Retrospective.tw.</td>
</tr>
<tr>
<td>71</td>
<td>Cross sectional.tw.</td>
</tr>
<tr>
<td>72</td>
<td>Cross-sectional studies/</td>
</tr>
<tr>
<td>73</td>
<td>61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72</td>
</tr>
<tr>
<td>74</td>
<td>31 and 73</td>
</tr>
</tbody>
</table>
Die Suche in MEDLINE (via Ovid) In Process & Other Non-Indexed Citations Datenbank ergab n=3 Treffer (RCT und OS). Die Recherchestrategie wurde für die Cochrane Library (CENTRAL) entsprechend modifiziert und die Suche ergab n=6 Treffer in der TRIALS Datenbank.

Ein- und Ausschlusskriterien

Tabelle 68: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 5.4-2)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Ausschlussgründe</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>A1: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>A2: Andere Intervention</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>A3: Andere Kontrolle</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>A4: Anderes Outcome</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>A6: Doppelpublikation oder aktuellere Publikation vorhanden</td>
</tr>
</tbody>
</table>

Die Suche in MEDLINE (via Ovid) In Process & Other Non-Indexed Citations Datenbank ergab n=3 Treffer (RCT und OS). Die Recherchestrategie wurde für die Cochrane Library (CENTRAL) entsprechend modifiziert und die Suche ergab n=6 Treffer in der TRIALS Datenbank.

Die Suche in MEDLINE (via Ovid) In Process & Other Non-Indexed Citations Datenbank ergab n=3 Treffer (RCT und OS). Die Recherchestrategie wurde für die Cochrane Library (CENTRAL) entsprechend modifiziert und die Suche ergab n=6 Treffer in der TRIALS Datenbank.
Ergebnisse der Recherche

Abbildung 12: Grafische Darstellung der Ergebnisse der Recherche SF 5.4-2 (Flussdiagramm)
Eingeschlossene Publikationen

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. P. Li, Z. Q. Meng, W. J. Guo and J. Li</td>
<td>2005: Treatment for liver metastases from breast cancer: results and prognostic factors</td>
</tr>
<tr>
<td>P. Mariani, V. Servois, Y. De Rycke, S. P. Bennett, J. G. Feron, M. M. Almubarak, F. Reyal, B. Baranger, J. Y. Pierga and R. J. Salmon</td>
<td>2013: Liver metastases from breast cancer: Surgical resection or not? A case-matched control study in highly selected patients</td>
</tr>
</tbody>
</table>

Ausgeschlossene Publikationen (Volltextscreening)

Ausschlussgrund A3: Andere Kontrolle (nicht PICO-Fragestellung)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergenfeldt, B. V. Jensen, B. Skjoldbye and D. Nielsen</td>
<td>2011: Liver resection and local ablation of breast cancer liver metastases--a systematic review</td>
</tr>
<tr>
<td>M. Howlader, N. Heaton and M. Rela</td>
<td>2011: Resection of liver metastases from breast cancer: towards a management guideline</td>
</tr>
<tr>
<td>G. Puippe, T. Pfammatter and N. Schaefer</td>
<td>2015: Arterial Therapies of Non-Colorectal Liver Metastases</td>
</tr>
<tr>
<td>F. Uggeri, P. A. Ronchi, P. Goffredo, M. Garancini, L. Degrate, L. Nespoli, L. Gianotti and F. Romano</td>
<td>2015: Metastatic liver disease from non-colorectal, non-neuroendocrine, non-sarcoma cancers: a systematic review</td>
</tr>
<tr>
<td>Autorinnen/Autoren</td>
<td>Artikeluntersuchungen</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>G. Carrafiello, F. Fontana, E. Cotta, M. Petulla, L. Brunese, M. Mangini and C. Fugazzola</td>
<td>2011: Ultrasound-guided thermal radiofrequency ablation (RFA) as an adjunct to systemic chemotherapy for breast cancer liver metastases</td>
</tr>
<tr>
<td>D. Ehrl, K. Rothaug, D. Hempel and H. G. Rau</td>
<td>2013: Importance of liver resection in case of hepatic breast cancer metastases</td>
</tr>
<tr>
<td>N. Karunanithy, F. Gordon, M. Hodolic, A. Al-Nahhas, H. S. Wasan, N. Habib and N. P. Tait</td>
<td>2011: Embolization of hepatic arterial branches to simplify hepatic blood flow before yttrium 90 radioembolization: a useful technique in the presence of challenging anatomy</td>
</tr>
<tr>
<td>Autorinnen/Autoren</td>
<td>Titel</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Coldwell, B. Sangro, R. Salem, H. Wasan and A. Kennedy, 2012</td>
<td>Radioembolization in the treatment of unresectable liver tumors: experience across a range of primary cancers</td>
</tr>
<tr>
<td>B. Elsberger, C. S. Roxburgh and P. G. Horgan, 2014</td>
<td>Is there a role for surgical resections of hepatic breast cancer metastases?</td>
</tr>
</tbody>
</table>
C. D. Gadaleta and G. Ranieri, 2011: Trans-arterial chemoembolization as a therapy for liver tumours: New clinical developments and suggestions for combination with angiogenesis inhibitors

C. F. Gonsalves and D. B. Brown, 2009: Chemoembolization of hepatic malignancy

R. Illing and A. Gillams, 2010: Radiofrequency ablation in the treatment of breast cancer liver metastases

B. Kuvshinoff and Y. Fong, 2007: Surgical therapy of liver metastases

E. Lermite, E. Marzano, E. Chereau, R. Rouzier and P. Pessaux, 2010: Surgical resection of liver metastases from breast cancer

J. Ruiterkamp and M. F. Ernst, 2011: The role of surgery in metastatic breast cancer

S. Zani and B. M. Clary, 2011: A role for hepatic metastasectomy in stage IV melanoma and breast cancer: reestablishing the surgical modality

M. Bergenfeldt, 2013: Palliative surgery in liver metastases from breast cancer: Is there evidence? An overview

Recherchestrategie

Tabelle 69: Recherchestrategie SF 5.4-3 in MEDLINE (via Ovid) (28. Juli 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drug Administration Schedule/st [Standards]</td>
</tr>
<tr>
<td>2</td>
<td>Antineoplastic Combined Chemotherapy Protocols/ad [Administration & Dosage]</td>
</tr>
<tr>
<td>3</td>
<td>Antineoplastic Agents/ad [Administration & Dosage]</td>
</tr>
<tr>
<td>4</td>
<td>chemotherapy, adjuvant/</td>
</tr>
<tr>
<td>5</td>
<td>Anthracyclines/ad [Administration & Dosage]</td>
</tr>
<tr>
<td>6</td>
<td>Cyclophosphamide/ad [Administration & Dosage]</td>
</tr>
<tr>
<td>7</td>
<td>Paclitaxel/ad [Administration & Dosage]</td>
</tr>
<tr>
<td>8</td>
<td>Taxoids/ad [Administration & Dosage]</td>
</tr>
<tr>
<td>9</td>
<td>(chemotherap* or antineoplastic).ti,ab,kw.</td>
</tr>
<tr>
<td>10</td>
<td>1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9</td>
</tr>
<tr>
<td>11</td>
<td>("single-agent" or "mono-therap*" or monotherap* or monochemotherap* or polytherap* or "poly-therap*" or polychemotherap or sequential or combined).ti,ab,kw.</td>
</tr>
<tr>
<td>12</td>
<td>10 and 11</td>
</tr>
<tr>
<td>13</td>
<td>breast neoplasms/ or "Triple Negative Breast Neoplasms"/ or Breast Neoplasms, Male/ or Unilateral Breast Neoplasms/ or Inflammatory Breast Neoplasms/</td>
</tr>
<tr>
<td>14</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>15</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>16</td>
<td>14 and 15</td>
</tr>
<tr>
<td>17</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metastas* or neoplasm* or tumo?r))).ti,ab,kw.</td>
</tr>
<tr>
<td>18</td>
<td>13 or 16 or 17</td>
</tr>
<tr>
<td>19</td>
<td>12 and 18</td>
</tr>
<tr>
<td>20</td>
<td>limit 19 to yr="2010 -Current“</td>
</tr>
<tr>
<td>21</td>
<td>limit 20 to (clinical trial, phase iii or meta analysis or systematic reviews)</td>
</tr>
<tr>
<td>22</td>
<td>limit 21 to english</td>
</tr>
<tr>
<td>23</td>
<td>limit 21 to german</td>
</tr>
<tr>
<td>24</td>
<td>(metastatic breast cancer or metastas*).ti,ab,kw.</td>
</tr>
<tr>
<td>25</td>
<td>22 and 24</td>
</tr>
<tr>
<td>26</td>
<td>limit 25 to (meta analysis or systematic reviews)</td>
</tr>
</tbody>
</table>

Anzahl der Treffer: n=43

Die Recherche in MEDLINE In Process & Other non-indexed Citations (via Ovid) ergab n=13 Treffer. Für die Recherche in der Datenbank CDSR der Cochrane Library wurde die oben genannte Strategie entsprechend angepasst und die Suche ergab n=24 Treffer in den Datenbanken Cochrane Reviews und Other Reviews.
Ein- und Ausschlusskriterien

Tabelle 70: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 5.4.3)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Ausschlussgründe</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>A1: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>A2: Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>A3: Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>A4: Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>A6: Doppelpublikation oder aktuellere Publikation vorhanden</td>
</tr>
</tbody>
</table>

Einschlussgründe:
- E1: Zielgruppe
- E2: Publikationstyp
- E3: Suchzeitraum
- E4: Sprachen
- E5: Intervention
- E6: Kontrolle(n)

Ausschlussgründe:
- A1: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)
- A2: Andere Intervention (nicht PICO)
- A3: Andere Kontrolle (nicht PICO)
- A4: Anderes Outcome (nicht PICO)
- A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)
- A6: Doppelpublikation oder aktuellere Publikation vorhanden
Ergebnisse der Recherche

Abbildung 13: Grafische Darstellung der Ergebnisse der Recherche SF 5.4-3 (Flussdiagramm)
Eingeschlossene Publikationen

<table>
<thead>
<tr>
<th>Autor(in)</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. X. Qi, L. N. Tang, A. N. He, Z. Shen and Y. Yao, 2013</td>
<td>Comparison between doublet agents versus single agent in metastatic breast cancer patients previously treated with an anthracycline and a taxane: a meta-analysis of four phase III trials</td>
</tr>
</tbody>
</table>

Ausgeschlossene Publikationen (Volltextscreening)

Ausschlussgrund A1: Anderes Thema (nicht Fragestellung)

<table>
<thead>
<tr>
<th>Autor(in)</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Kawalec, S. Lopuch and A. Mikrut, 2015</td>
<td>Effectiveness of targeted therapy in patients with previously untreated metastatic breast cancer: a systematic review and meta-analysis</td>
</tr>
</tbody>
</table>

Ausschlussgrund A2: Andere Intervention (nicht PICO)

J. Butters Daria, D. Gersi, N. Wilcken, J. Kirk Steven and T. Mallon Peter, 2010: Addition of drug/s to a chemotherapy regimen for metastatic breast cancer

Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

13.5.8. **Kapitel 6.4 Nachsorge**

Tabelle 71: Recherchestrategie SF 6.4-1 in MEDLINE (via Ovid) (10. Juni 2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(ultrasoun* or ultrasonograph*).tw,ab,kw.</td>
</tr>
<tr>
<td>2</td>
<td>*Neoplasms, Second Primary/us or *Breast Neoplasms/us</td>
</tr>
<tr>
<td>3</td>
<td>*Ultrasonography, Mammary/mt</td>
</tr>
<tr>
<td>4</td>
<td>*Neoplasm Recurrence, Local/us [Ultrasonography]</td>
</tr>
<tr>
<td>5</td>
<td>1 or 2 or 3 or 4</td>
</tr>
<tr>
<td>6</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>7</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>8</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>9</td>
<td>7 and 8</td>
</tr>
<tr>
<td>10</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metastas* or neoplasm* or tumo?r or recurren* or locoregional or loco-regional or secondary breast cancer))).ti,ab,kw.</td>
</tr>
<tr>
<td>11</td>
<td>6 or 9 or 10</td>
</tr>
<tr>
<td>12</td>
<td>(“evaluation of recurrence* or recurrence screening or recurrence prevention or history of breast cancer surgery or follow-up screening or (follow-up adj2 breast cancer)).tw,ab,kw.</td>
</tr>
<tr>
<td>13</td>
<td>((additional or supplement* or diagnostic or screening) adj2 ultrasound*).tw,ab,kw.</td>
</tr>
<tr>
<td>14</td>
<td>5 or 13</td>
</tr>
<tr>
<td>15</td>
<td>11 and 14</td>
</tr>
<tr>
<td>16</td>
<td>12 and 15</td>
</tr>
<tr>
<td>17</td>
<td>limit 16 to yr="2005 -Current"</td>
</tr>
<tr>
<td>18</td>
<td>limit 17 to english</td>
</tr>
<tr>
<td>19</td>
<td>limit 17 to german</td>
</tr>
<tr>
<td>20</td>
<td>18 or 19</td>
</tr>
</tbody>
</table>

Anzahl der Treffer: n=17

Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations Datenbank ergab n=5 Treffer.
Die Recherchestrategie wurde für die Cochrane Library (CDSR, CENTRAL, DARE) entsprechend modifiziert und die Suche ergab n=23 Treffer. Zusätzlich wurden die klinischen Register clinicaltrials.gov und EU trials mit den Begriffskombinationen „ultrasound and recurrent breast neoplasm“, und „ultrasound and recurrent breast cancer“ ab 2005 nach Studien, die bereits Ergebnisse aufweisen (completed und has results/studies with results), durchsucht. Es wurden n=4 Treffer durch diese Suche identifiziert.
Ein- und Ausschlusskriterien

Tabelle 72: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF 6.4-1)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>Wie PICO</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>Systematische Übersichtsarbeiten, RCT, Observational Studies</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>2005 - Aktuell</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>Deutsch und englisch</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>Wie PICO</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>Wie PICO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausschlussgründe</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>A2</td>
<td>Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>A3</td>
<td>Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>A4</td>
<td>Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>A5</td>
<td>Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>A6</td>
<td>Doppelpublikation oder aktuellere Publikation vorhanden</td>
</tr>
</tbody>
</table>
Ergebnisse der Recherche

Suchtreffer \(n = 54 \) → Dubletten \(n = 2 \)

Durchsicht Titel/Abstract \(n = 60 \)

 Ausgeschlossene Publikationen \(n = 46 \)

Sichtung Referenzliste \(n = 1 \)

Durchsicht Volltextpublikationen \(n = 15 \)

 Ausgeschlossene Publikationen \(n = 13 \)

A1 = 3
A2 = 1
A3 = 8
A4 = 1

Eingeschlossene Publikationen \(n = 2 \)

Abbildung 14: Grafische Darstellung der Ergebnisse der Recherche SF 6.4-1 (Flussdiagramm)
Eingeschlossene Publikationen

Wojcinski et al., 2011: Optimizing breast cancer follow-up: diagnostic value and costs of additional routine breast ultrasound: [Expertenbeitrag]

Riebe et al., 2007: Recurrent Disease after Breast Preserving Therapy (BPT) and Radiation Therapy for Breast Cancer – Diagnostic Yield of Palpation, Mammography and Ultrasonography; [Beitrag aus Referenzlistensichtung]

Ausgeschlossene Publikationen (Volltextscreening)

Ausschlussgrund A1: Andere Zielpopulation (nicht PICO-Fragestellung)

Ausschlussgrund A2: Andere Intervention (nicht PICO-Fragestellung)

Robertson et al., 2011: The clinical effectiveness and cost-effectiveness of different surveillance mammography regimens after the treatment for primary breast cancer: systematic reviews registry database analyses and economic evaluation

Ausschlussgrund A3: Andere Kontrolle (nicht PICO-Fragestellung)

J. Leikola, T. Saarto, H. Joensuu, K. Sarvas, J. Vironen, K. Von Smitten, P. Virkkunen, B. Vanharanta, P. Makela and M. Leidenius, 2006: Ultrasonography of the axilla in the follow-up of breast cancer patients who have a negative sentinel node biopsy and who avoid axillary clearance

L. Pan, Y. Han, X. Sun, J. Liu and H. Gang, 2010: FDG-PET and other imaging modalities for the evaluation of breast cancer recurrence and metastases: a meta-analysis
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L. Preda, G. Villa, S. Rizzo, L. Bazzi, D. Origgi, E. Cassano and M. Bellomi, 2006: Magnetic resonance mammography in the evaluation of recurrence at the prior lumpectomy site after conservative surgery and radiotherapy</td>
</tr>
</tbody>
</table>

Ausschlussgrund A4: Anderes Outcome (nicht PICO-Fragestellung)

| R. J. Bell, M. Schwarz, P. Fradkin and S. R. Davis, 2013: Use of imaging in surveillance of women with early |
13.5.9. **Kapitel Mammakarzinom in Schwangerschaft und Stillzeit, Schwangerschaft nach Mammakarzinom, Fertilitätserhalt**

Recherchestrategie

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/ or Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>2</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>3</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>4</td>
<td>2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumo?r or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>6</td>
<td>1 or 4 or 5</td>
</tr>
<tr>
<td>7</td>
<td>Pregnancy Complications, Neoplastic/dt [Drug Therapy]</td>
</tr>
<tr>
<td>8</td>
<td>6 and 7</td>
</tr>
<tr>
<td>9</td>
<td>limit 8 to (yr="2007 -Current" and (english or german))</td>
</tr>
<tr>
<td>10</td>
<td>Meta-Analysis as Topic/</td>
</tr>
<tr>
<td>11</td>
<td>meta analy$.tw.</td>
</tr>
<tr>
<td>12</td>
<td>metaanaly$.tw.</td>
</tr>
<tr>
<td>13</td>
<td>Meta-Analysis/</td>
</tr>
<tr>
<td>14</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td>15</td>
<td>exp Review Literature as Topic/</td>
</tr>
<tr>
<td>16</td>
<td>or/10-15</td>
</tr>
<tr>
<td>17</td>
<td>cochrane.ab.</td>
</tr>
<tr>
<td>18</td>
<td>embase.ab.</td>
</tr>
<tr>
<td>19</td>
<td>(psychlit or psyclit).ab.</td>
</tr>
<tr>
<td>20</td>
<td>(psychinfo or psychinfo).ab.</td>
</tr>
<tr>
<td>21</td>
<td>(cinahl or cinhal).ab.</td>
</tr>
<tr>
<td>22</td>
<td>science citation index.ab.</td>
</tr>
<tr>
<td>23</td>
<td>bids.ab.</td>
</tr>
<tr>
<td>24</td>
<td>cancerlit.ab.</td>
</tr>
<tr>
<td>25</td>
<td>or/17-24</td>
</tr>
<tr>
<td>26</td>
<td>reference list$.ab.</td>
</tr>
<tr>
<td>27</td>
<td>bibliograph$.ab.</td>
</tr>
<tr>
<td>28</td>
<td>hand-search$.ab.</td>
</tr>
<tr>
<td>29</td>
<td>relevant journals.ab.</td>
</tr>
<tr>
<td>30</td>
<td>manual search$.ab.</td>
</tr>
<tr>
<td>31</td>
<td>or/26-30</td>
</tr>
<tr>
<td>32</td>
<td>selection criteria.ab.</td>
</tr>
<tr>
<td>33</td>
<td>data extraction.ab.</td>
</tr>
<tr>
<td>34</td>
<td>32 or 33</td>
</tr>
</tbody>
</table>
Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations Datenbank ergab n=0 Treffer. Die Recherchestrategie wurde für die Cochrane Library (CDSR, DARE) entsprechend modifiziert und die Suche ergab n=1 Treffer.

Ein- und Ausschlusskriterien

Tabelle 74: Ein- und Ausschlusskriterien für die Volltextdurchsicht (SF Schwanger1)

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Ausschlussgründe</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>Andere Intervention (nicht PICO)</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>Andere Kontrolle (nicht PICO)</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>Anderes Outcome (nicht PICO)</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>Doppelpublikation oder aktuellere Publikation vorhanden</td>
</tr>
</tbody>
</table>

Anzahl der Treffer: n=3
Ergebnisse der Recherche

Abbildung 15: Grafische Darstellung der Ergebnisse der Recherche SF Schwanger 1 (Flussdiagramm)
Eingeschlossene Publikationen

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Titel</th>
</tr>
</thead>
</table>
Recherchestrategie

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
</tr>
<tr>
<td>2</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>3</td>
<td>1 and 2</td>
</tr>
<tr>
<td>4</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metastasi* or neoplasm* or tumori* or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>5</td>
<td>breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/</td>
</tr>
<tr>
<td>6</td>
<td>3 or 4 or 5</td>
</tr>
<tr>
<td>7</td>
<td>Pregnancy/ or Pregnancy in Adolescence/</td>
</tr>
<tr>
<td>8</td>
<td>pregnancy/</td>
</tr>
<tr>
<td>9</td>
<td>7 or 8</td>
</tr>
<tr>
<td>10</td>
<td>pregnan*.ti,ab,kw.</td>
</tr>
<tr>
<td>11</td>
<td>9 or 10</td>
</tr>
<tr>
<td>12</td>
<td>6 and 11</td>
</tr>
<tr>
<td>13</td>
<td>(((pregnan* after adj3 breast cancer) or pregnan* following) adj3 breast cancer).ti,ab,kw.</td>
</tr>
<tr>
<td>14</td>
<td>12 and 13</td>
</tr>
<tr>
<td>15</td>
<td>limit 14 to (yr="2000 -Current" and (english or german))</td>
</tr>
<tr>
<td>16</td>
<td>Meta-Analysis as Topic/</td>
</tr>
<tr>
<td>17</td>
<td>meta analy$.tw.</td>
</tr>
<tr>
<td>18</td>
<td>metaanaly$.tw.</td>
</tr>
<tr>
<td>19</td>
<td>Meta-Analysis/</td>
</tr>
<tr>
<td>20</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td>21</td>
<td>exp Review Literature as Topic/</td>
</tr>
<tr>
<td>22</td>
<td>or/16-21</td>
</tr>
<tr>
<td>23</td>
<td>cochrane.ab.</td>
</tr>
<tr>
<td>24</td>
<td>embase.ab.</td>
</tr>
<tr>
<td>25</td>
<td>(psychlit or psyclit).ab.</td>
</tr>
<tr>
<td>26</td>
<td>(psychinfo or psycinfo).ab.</td>
</tr>
<tr>
<td>27</td>
<td>(cinahl or cinhal).ab.</td>
</tr>
<tr>
<td>28</td>
<td>science citation index.ab.</td>
</tr>
<tr>
<td>29</td>
<td>bids.ab.</td>
</tr>
<tr>
<td>30</td>
<td>cancerlit.ab.</td>
</tr>
<tr>
<td>31</td>
<td>or/23-30</td>
</tr>
<tr>
<td>32</td>
<td>reference list$.ab.</td>
</tr>
<tr>
<td>33</td>
<td>bibliograph$.ab.</td>
</tr>
<tr>
<td>34</td>
<td>hand-search$.ab.</td>
</tr>
<tr>
<td>35</td>
<td>relevant journals.ab.</td>
</tr>
<tr>
<td>36</td>
<td>manual search$.ab.</td>
</tr>
<tr>
<td>37</td>
<td>or/32-36</td>
</tr>
</tbody>
</table>
Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations Datenbank ergab n=0 Treffer. Die Recherchestrategie wurde für die Cochrane Library (CDSR, DARE) entsprechend modifiziert und die Suche ergab n=1 Treffer.

38	selection criteria.ab.
39	data extraction.ab.
40	38 or 39
41	Review/
42	40 and 41
43	Comment/
44	Letter/
45	Editorial/
46	animal/
47	human/
48	46 not (46 and 47)
49	or/43-45,48
50	22 or 31 or 37 or 42
51	50 not 49
52	15 and 51

Anzahl der Treffer: n=3
Tabelle 76: Recherchestrategie SF Schwanger 2 in MEDLINE (via Ovid) (02. November 2016)

<table>
<thead>
<tr>
<th>Searches</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Epidemioologic studies/</td>
<td></td>
</tr>
<tr>
<td>2 exp case control studies/</td>
<td></td>
</tr>
<tr>
<td>3 exp cohort studies/</td>
<td></td>
</tr>
<tr>
<td>4 Case control.tw.</td>
<td></td>
</tr>
<tr>
<td>5 (cohort adj (study or studies)).tw.</td>
<td></td>
</tr>
<tr>
<td>6 Cohort analy$.tw.</td>
<td></td>
</tr>
<tr>
<td>7 (Follow up adj (study or studies)).tw.</td>
<td></td>
</tr>
<tr>
<td>8 (observational adj (study or studies)).tw.</td>
<td></td>
</tr>
<tr>
<td>9 Longitudinal.tw.</td>
<td></td>
</tr>
<tr>
<td>10 Retrospective.tw.</td>
<td></td>
</tr>
<tr>
<td>11 Cross sectional.tw.</td>
<td></td>
</tr>
<tr>
<td>12 Cross-sectional studies/</td>
<td></td>
</tr>
<tr>
<td>13 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12</td>
<td></td>
</tr>
<tr>
<td>14 breast/ or mammary glands, human/ or nipples/ or Breast Diseases/</td>
<td></td>
</tr>
<tr>
<td>15 Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
<td></td>
</tr>
<tr>
<td>16 14 and 15</td>
<td></td>
</tr>
<tr>
<td>17 (brca or (breast adj 4 (adenocarcinoma* or cancer* or carcinoma* or metasta* or neoplasm* or tumo?r or HER2 or PgR or ER))).ti,ab,kw.</td>
<td></td>
</tr>
<tr>
<td>18 breast neoplasms/ or carcinoma, ductal, breast/ or "hereditary breast and ovarian cancer syndrome"/</td>
<td></td>
</tr>
<tr>
<td>19 16 or 17 or 18</td>
<td></td>
</tr>
<tr>
<td>20 Pregnancy/ or Pregnancy in Adolescence/</td>
<td></td>
</tr>
<tr>
<td>21 pregnancy/</td>
<td></td>
</tr>
<tr>
<td>22 20 or 21</td>
<td></td>
</tr>
<tr>
<td>23 pregnan*.ti,ab,kw.</td>
<td></td>
</tr>
<tr>
<td>24 22 or 23</td>
<td></td>
</tr>
<tr>
<td>25 19 and 24</td>
<td></td>
</tr>
<tr>
<td>26 (pregnan* after adj 3 breast cancer) or (pregnan* following adj 3 breast cancer)).ti,ab,kw.</td>
<td></td>
</tr>
<tr>
<td>27 25 and 26</td>
<td></td>
</tr>
<tr>
<td>28 limit 27 to (yr="2000 -Current" and (english or german))</td>
<td></td>
</tr>
<tr>
<td>29 13 and 28</td>
<td></td>
</tr>
</tbody>
</table>

Anzahl der Treffer: n=17

Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations Datenbank ergab n=1 Treffer.
Ein- und Ausschlusskriterien

Einschlussgründe

<table>
<thead>
<tr>
<th>E1: Zielgruppe</th>
<th>Wie PICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2: Publikationstyp</td>
<td>Systematische Übersichtsarbeiten</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>2000 - Aktuell</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>Wie PICO</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>Wie PICO</td>
</tr>
</tbody>
</table>

Ausschlussgründe

A1	andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)
A2	Andere Intervention (nicht PICO)
A3	Andere Kontrolle (nicht PICO)
A4	Anderes Outcome (nicht PICO)
A5	Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)
A6	Doppelpublikation oder aktuellere Publikation vorhanden
Ergebnisse der Recherchen

Abbildung 16: Grafische Darstellung der Ergebnisse der Recherche SF Schwanger 2 (Flussdiagramm)
Eingeschlossene Publikationen (Volltextbewertung)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Titel der Publikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Valachis, L. Tsali, L. L. Pesce, N. P. Polyzos, C. Dimitriadis, K. Tsalis and D. Mauri, 2010</td>
<td>Safety of pregnancy after primary breast carcinoma in young women: a meta-analysis to overcome bias of healthy mother effect studies</td>
</tr>
</tbody>
</table>

Ausgeschlossene Publikationen Ausschlussgrund A1: Andere Zielgruppe (Erkrankung bzw. Patientenpopulation)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Titel der Publikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Savignoni, C. Giard, P. Tubert-Bitter and Y. D. Rycke, 2014</td>
<td>Matching methods to create paired survival data based on an exposure occurring over time: a simulation study with application to breast cancer</td>
</tr>
</tbody>
</table>

Ausgeschlossene Publikationen Ausschlussgrund A2: Andere Intervention (nicht PICO)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Titel der Publikation</th>
</tr>
</thead>
</table>

Ausgeschlossene Publikationen Ausschlussgrund A4: Anderes Outcome (nicht PICO)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Titel der Publikation</th>
</tr>
</thead>
</table>
Ausgeschlossene Publikationen Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

<table>
<thead>
<tr>
<th>Autor/Innen</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. S. Upponi, F. Ahmad, I. S. Whitaker and A. D. Purushotham</td>
<td>2003: Pregnancy after breast cancer</td>
</tr>
<tr>
<td>C. Dabrosin</td>
<td>2015: An overview of pregnancy and fertility issues in breast cancer patients</td>
</tr>
<tr>
<td>A. Gadducci, S. Cosio and A. R. Genazzani</td>
<td>2007: Ovarian function and childbearing issues in breast cancer survivors</td>
</tr>
<tr>
<td>E. J. Rutgers</td>
<td>2004: Follow-up care in breast cancer</td>
</tr>
</tbody>
</table>
Kapitel Ältere Patientin

Recherchestrategie

Tabelle 77: Recherchestrategie Kapitel Ältere Patientin in MEDLINE (via Ovid) (23.08.2016)

<table>
<thead>
<tr>
<th>#</th>
<th>Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Breast Neoplasms/</td>
</tr>
<tr>
<td>2</td>
<td>Carcinoma, Ductal, Breast/</td>
</tr>
<tr>
<td>3</td>
<td>Breast Neoplasms, Male/</td>
</tr>
<tr>
<td>4</td>
<td>"hereditary breast and ovarian cancer syndrome"/</td>
</tr>
<tr>
<td>5</td>
<td>1 or 2 or 3 or 4</td>
</tr>
<tr>
<td>6</td>
<td>breast/ or mammary, glands, human/ or Nipples/ or Breast disease/</td>
</tr>
<tr>
<td>7</td>
<td>Neoplasms/ or Adenocarcinoma/ or Carcinoma/</td>
</tr>
<tr>
<td>8</td>
<td>6 and 7</td>
</tr>
<tr>
<td>9</td>
<td>(brca or (breast adj4 (adenocarcinoma* or cancer* or carcinoma* or metastas* or neoplasm* or tumor* or HER2 or PgR or ER))).ti,ab,kw.</td>
</tr>
<tr>
<td>10</td>
<td>5 or 8 or 9</td>
</tr>
<tr>
<td>11</td>
<td>"Aged, 80 and over"/ or Aged/</td>
</tr>
<tr>
<td>12</td>
<td>(older adj3women or (older adj3 women) or (older adj3 breast) or elderly or frail).ti,ab,kw.</td>
</tr>
<tr>
<td>13</td>
<td>10 and 11</td>
</tr>
<tr>
<td>14</td>
<td>12 and 13</td>
</tr>
<tr>
<td>15</td>
<td>limit 14 to yr="2007 -Current"</td>
</tr>
<tr>
<td>16</td>
<td>Meta-Analysis as Topic/</td>
</tr>
<tr>
<td>17</td>
<td>meta analy$.tw.</td>
</tr>
<tr>
<td>18</td>
<td>metaanaly$.tw.</td>
</tr>
<tr>
<td>19</td>
<td>Meta-Analysis/</td>
</tr>
<tr>
<td>20</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
</tr>
<tr>
<td>21</td>
<td>exp Review Literature as Topic/</td>
</tr>
<tr>
<td>22</td>
<td>or/16-21</td>
</tr>
<tr>
<td>23</td>
<td>cochrane.ab.</td>
</tr>
<tr>
<td>24</td>
<td>embase.ab.</td>
</tr>
<tr>
<td>25</td>
<td>(psychlit or psyclit).ab.</td>
</tr>
<tr>
<td>26</td>
<td>(psychinfo or psycinfo).ab.</td>
</tr>
<tr>
<td>27</td>
<td>(cinalh or cinhal).ab.</td>
</tr>
<tr>
<td>28</td>
<td>science citation index.ab.</td>
</tr>
<tr>
<td>29</td>
<td>bids.ab.</td>
</tr>
<tr>
<td>30</td>
<td>cancerlit.ab.</td>
</tr>
<tr>
<td>31</td>
<td>or/23-30</td>
</tr>
<tr>
<td>32</td>
<td>reference list$.ab.</td>
</tr>
<tr>
<td>33</td>
<td>bibliograph$.ab.</td>
</tr>
<tr>
<td>34</td>
<td>hand-search$.ab.</td>
</tr>
<tr>
<td>35</td>
<td>relevant journals.ab.</td>
</tr>
<tr>
<td>36</td>
<td>manual search$.ab.</td>
</tr>
</tbody>
</table>
Die Suche in MEDLINE (via Ovid) In-Process & Other Non-Indexed Citations Datenbank ergab n=0 Treffer. Für die Recherche in den Datenbanken CDSR der Cochrane Library wurde die oben genannte Strategie entsprechend angepasst und die Suche ergab n=7 Treffer in den Datenbanken Cochrane Reviews und Other Reviews.

Ein- und Ausschlusskriterien

<table>
<thead>
<tr>
<th>Einschlussgründe</th>
<th>Ausschlussgründe</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1: Zielgruppe</td>
<td>A1: andere Zielgruppe/Thema (Erkrankung bzw. Patientenpopulation)</td>
</tr>
<tr>
<td>E2: Publikationstyp</td>
<td>A2: Therapie</td>
</tr>
<tr>
<td>E3: Suchzeitraum</td>
<td>A3: Keine Beschränkung</td>
</tr>
<tr>
<td>E4: Sprachen</td>
<td>A4: Keine Beschränkung</td>
</tr>
<tr>
<td>E5: Intervention</td>
<td>A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)</td>
</tr>
<tr>
<td>E6: Kontrolle(n)</td>
<td>A6: Doppelpublikation oder aktuellere Publikation vorhanden, Volltext nicht verfügbar</td>
</tr>
</tbody>
</table>

Anzahl der Treffer n=38.
Ergebnisse der Recherchen

Abbildung 17: Grafische Darstellung der Ergebnisse der allgemeinen Recherche Ältere Patientin (Flussdiagramm)
Eingeschlossene Publikationen (Volltextbewertung)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Titel</th>
<th>Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Morgan, L. Wyld, A. Collins Karen and W. Reed Malcolm</td>
<td>Surgery versus primary endocrine therapy for operable primary breast cancer in elderly women (70 years plus)</td>
<td>2014</td>
</tr>
</tbody>
</table>

Ausgeschlossene Publikationen (Volltextscreening)

Ausgeschlossene Publikationen Ausschlussgrund A1 Andere Zielgruppe (Erkrankung bzw. Patientenpopulation)

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Titel</th>
<th>Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. S. Bassuk and J. E. Manson</td>
<td>Oral contraceptives and menopausal hormone therapy: relative and attributable risks of cardiovascular disease, cancer, and other health outcomes</td>
<td>2015</td>
</tr>
<tr>
<td>C. Farquhar, J. Marjoribanks, A. Lethaby, J. A. Suckling and Q. Lamberts</td>
<td>Long term hormone therapy for perimenopausal and postmenopausal women</td>
<td>2009</td>
</tr>
<tr>
<td>W. Galit, M. S. Green and K. B. Lital</td>
<td>Routine screening mammography in women older than 74 years: a review of the available data (Structured abstract)</td>
<td>2007</td>
</tr>
<tr>
<td>A. Goodwin, S. Parker, D. Ghersi and N. Wilcken</td>
<td>Post-operative radiotherapy for ductal carcinoma in situ of the breast</td>
<td>2013</td>
</tr>
<tr>
<td>J. Marjoribanks, C. Farquhar, H. Roberts and A. Lethaby</td>
<td>Long term hormone therapy for perimenopausal and postmenopausal women</td>
<td>2012</td>
</tr>
<tr>
<td>R. M. Parks, R. Lakshmanan, L. Winterbottom, D. Al Morgan, K. Cox and K. L. Cheung</td>
<td>Comprehensive geriatric assessment for older women with early breast cancer - a systematic review of literature</td>
<td>2012</td>
</tr>
</tbody>
</table>
Ausgeschlossene Publikationen Ausschlussgrund A5: Anderer Publikationstyp (Editorial, Fallbericht, Brief etc.)

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Cutuli, 2009</td>
<td>[Breast cancer irradiation in elderly]</td>
</tr>
<tr>
<td>M. Debled, C. Bellera, C. Donamaria and P. Soubeyran, 2011</td>
<td>Chemotherapy treatment for older women with metastatic breast cancer: what is the evidence?</td>
</tr>
<tr>
<td>A. Hurria and M. Lachs, 2007</td>
<td>Is cognitive dysfunction a complication of adjuvant chemotherapy in the older patient with breast cancer?</td>
</tr>
<tr>
<td>A. Jager, J. Verweij and S. Sleijfer, 2009</td>
<td>Chemotherapy: Adjuvant chemotherapy in older patients with breast cancer</td>
</tr>
<tr>
<td>S. J. Johnston and K. L. Cheung, 2015</td>
<td>The role of primary endocrine therapy in older women with operable breast cancer</td>
</tr>
<tr>
<td>S. Loibl, G. von Minckwitz, N. Harbeck, W. Janni, D. Elling, M. Kaufmann, H. Eggemann, V. Nekljudova, H. Sommer, M. Kiechle and S. Kummel, 2008</td>
<td>Clinical feasibility of (neo)adjuvant taxane-based chemotherapy in older patients: analysis of >4,500 patients from four German randomized breast cancer trials</td>
</tr>
<tr>
<td>H. B. Muss, 2010</td>
<td>Coming of age: breast cancer in seniors</td>
</tr>
<tr>
<td>S. K. Pal and J. Mortimer, 2009</td>
<td>Adjuvant systemic therapy for older adults with early-stage breast cancer</td>
</tr>
<tr>
<td>S. Palmeri, M. Berretta and L. Palmeri, 2013</td>
<td>Medical treatment of elderly patients with breast cancer</td>
</tr>
<tr>
<td>Ausschlussgrund A6: Doppelpublikation, veraltete Publikation</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>D. Hind, L. Wyld and M. W. Reed, 2007: Surgery, with or without tamoxifen, vs tamoxifen alone for older women with operable breast cancer: cochrane review</td>
<td></td>
</tr>
<tr>
<td>J. L. Morgan, M. W. Reed and L. Wyld, 2014: Primary endocrine therapy as a treatment for older women with operable breast cancer - a comparison of randomised controlled trial and cohort study findings</td>
<td></td>
</tr>
</tbody>
</table>
14. Literatur

14. Literatur

Erstveröffentlichung: 07/2012
Überarbeitung von: 12/2017
Nächste Überprüfung geplant: 11/2022

Die AWMF erfasst und publiziert die Leitlinien der Fachgesellschaften mit größtmöglicher Sorgfalt - dennoch kann die AWMF für die Richtigkeit des Inhalts keine Verantwortung übernehmen. Insbesondere bei Dosierungsangaben sind stets die Angaben der Hersteller zu beachten!

Autorisiert für elektronische Publikation: AWMF online