Important Updates

Major changes in the update of the guideline (version 3.0)

Within the framework of the update, all recommendations were checked for topicality. For this purpose, a systematic search for prioritised topics and survey of the experts involved were conducted. Prioritised topics were sentinel lymph node biopsy, new findings on the differential indication of neck dissection, neoadjuvant therapy in advanced tumour stages and adjuvant radiotherapy in pT1/2 pN1 findings. In addition, further questions on the indication of PET/CT, CAD/CAM technology for bony reconstruction, the differential indication for panendoscopy and immunotherapy were examined in working groups. The new TNM classification and classification of tumour stages were incorporated.

As a result of the update process, 74 statements or recommendations were reviewed and confirmed and 24 were modified or added entirely.

An overview of the changes can be found in section Chapter 12.1.
Important Updates

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Information about this Guideline</td>
<td>4</td>
</tr>
<tr>
<td>1.1. Editors</td>
<td>4</td>
</tr>
<tr>
<td>1.2. Leading Scientific Societies</td>
<td>4</td>
</tr>
<tr>
<td>1.3. Funding of the Guideline</td>
<td>4</td>
</tr>
<tr>
<td>1.4. Contact</td>
<td>4</td>
</tr>
<tr>
<td>1.5. How to cite</td>
<td>4</td>
</tr>
<tr>
<td>1.6. Special Comment</td>
<td>5</td>
</tr>
<tr>
<td>1.7. Objectives of the Guideline Program for Oncology</td>
<td>5</td>
</tr>
<tr>
<td>1.8. Additional Documents relating to this Guideline</td>
<td>6</td>
</tr>
<tr>
<td>1.9. Composition of the Guideline Group</td>
<td>6</td>
</tr>
<tr>
<td>1.9.1. Guideline Coordination</td>
<td>6</td>
</tr>
<tr>
<td>1.9.2. Participating professional associations and organizations</td>
<td>7</td>
</tr>
<tr>
<td>1.9.3. Patient Involvement</td>
<td>10</td>
</tr>
<tr>
<td>1.9.4. Methodological Support</td>
<td>10</td>
</tr>
<tr>
<td>1.10. Abbreviations Used</td>
<td>11</td>
</tr>
<tr>
<td>2. Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.1. Scope and Purpose</td>
<td>13</td>
</tr>
<tr>
<td>2.1.1. Objective and Key Questions</td>
<td>13</td>
</tr>
<tr>
<td>2.1.2. Target Audience</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3. Validity and Update Process</td>
<td>14</td>
</tr>
<tr>
<td>2.2. Methodology</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1. Levels of Evidence (LoE)</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2. Grades of Recommendation (GoR)</td>
<td>15</td>
</tr>
<tr>
<td>2.2.3. Statements</td>
<td>16</td>
</tr>
<tr>
<td>2.2.4. Expert Consensus (EK)</td>
<td>16</td>
</tr>
<tr>
<td>2.2.5. Independence and Disclosure of Possible Conflicts of Interest</td>
<td>16</td>
</tr>
<tr>
<td>3. Methodologies</td>
<td>17</td>
</tr>
<tr>
<td>4. Risk factors</td>
<td>17</td>
</tr>
</tbody>
</table>
4.1. Nicotine and alcohol abuse

4.2. Other risk factors

5. **Screening and prevention**

5.1. Screening

5.2. Prevention

6. **Primary diagnostics**

6.1. Clinical examination

7. **Imaging techniques and further diagnostics**

7.1. Imaging methods for the diagnosis of the primary tumor

7.2. Diagnostic imaging techniques for the detection of metastasis

7.3. Imaging and diagnostics to exclude synchronous second tumors, distant metastases, unknown primary tumors (CUP) and recurrences

8. **Biopsy and histopathology**

8.1. Staging

8.2. Primary tumor

8.3. Cervical lymph node metastases

8.4. Other prognostic factors

9. **Therapy of oral cavity carcinoma**

9.1. General treatment recommendations

9.2. Surgical treatment of the primary tumor

9.3. Cervical lymph node excision

9.4. Reconstruction

9.5. Radiotherapy

9.6. Radiotherapy in combination with chemotherapy

9.7. Prevention and treatment of radiation–related side effects

9.8. Treatment of locoregional recurrence
9.9. Palliative and palliative medical treatment ... 58

10. **Aftercare and rehabilitation** .. 64

10.1. Aftercare .. 64
10.2. Kaufunktionelle rehabilitation .. 66
10.3. Speech and swallowing rehabilitation .. 67
10.4. Nutritional Therapy ... 69
10.5. Psychosocial counselling and care ... 70

11. **Quality indicators** ... 71

12. **Appendix** .. 75

12.1. Overview of changes in version 3.0 ... 75
12.2. TNM classification .. 78
12.3. Classification of the cervical lymph nodes ... 82

13. **Evidence tables** .. 84

14. **List of Figures** ... 84

15. **List of Tables** ... 84

16. **Bibliography** ... 86
1. **Information about this Guideline**

1.1. **Editors**
German Guideline Program in Oncology (GGPO) of the Association of the Scientific Medical Societies (AWMF), the German Cancer Society (DKG) and the German Cancer Aid (DKH).

1.2. **Leading Scientific Societies**
Deutsche Gesellschaft für Mund-, Kiefer- und Gesichtschirurgie (DGMKG)

1.3. **Funding of the Guideline**
This guideline was supported by the German Cancer Aid within the framework of the guideline program oncology.

1.4. **Contact**
Office Leitlinienprogramm Onkologie
c/o Deutsche Krebgesellschaft e. V.
Kuno-Fischer-Straße 80
14057 Berlin
leitlinienprogramm@krebsgesellschaft.de
www.leitlinienprogramm-onkologie.de

1.5. **How to cite**
German Guideline Program in Oncology (German Cancer Society, German Cancer Aid, AWMF):
oral cavity cancer
1.6 Special Comment

Medicine is subject to a continuous process of development, so that all information, in particular on diagnostic and therapeutic procedures, can only ever correspond to the state of knowledge at the time of printing of the guideline. The greatest possible care has been taken with regard to the recommendations given for therapy and the selection and dosage of medications. Nevertheless, users are urged to consult the manufacturers’ package inserts and expert information and, in case of doubt, to consult a specialist. In the general interest, any discrepancies should be reported to the OL editorial office.

The user himself remains responsible for any diagnostic and therapeutic application, medication and dosage.

In this guideline, registered trademarks (protected trade names) are not specially marked. Therefore, it cannot be concluded from the absence of a corresponding reference that it is a free trade name.

The work is protected by copyright in all its parts. Any use outside the provisions of copyright law without the written consent of the OL editorial office is prohibited and punishable by law. No part of the work may be reproduced in any form without the written permission of the OL editorial office. This applies in particular to duplications, translations, microfilming and the storage, use and exploitation in electronic systems, intranets and the Internet.

1.7 Objectives of the Guideline Program for Oncology

The Association of the Scientific Medical Societies in Germany (AWMF), the German Cancer Society (DKG) and the German Cancer Aid (Deutsche Krebshilfe) have set the goal of jointly promoting and supporting the development, updating and use of scientifically based and practicable guidelines in oncology with the German Guideline Program in Oncology (GGPO). The basis of this program is based on the medical-scientific findings of the professional societies and the DKG, the consensus of medical experts, users and patients, as well as the set of rules for the development of guidelines by the AWMF and the professional support and funding by the German Cancer Aid. In order to reflect the current state of medical knowledge and to take medical progress into account, guidelines must be regularly reviewed and updated. The application of the AWMF regulations should be the basis for the development of high-quality oncological guidelines. As guidelines are an important instrument of quality assurance and quality management in oncology, they should be introduced into the daily care routine in a targeted and sustainable manner. Thus, active implementation measures and also evaluation programmes are an important part of the promotion of the Oncology Guidelines Programme. The aim of the programme is to create professional and medium-term financially secure conditions for the development and provision of high-quality guidelines in Germany. This is because these high-quality guidelines not only serve the structured transfer of knowledge, but can also find their place in the design of the structures of the health care system. Mention should be made here of evidence-based guidelines as a basis for creating and updating disease management programmes or the use of quality indicators extracted from guidelines in the context of the certification of organ tumour centres.
1.8. Additional Documents relating to this Guideline

This document is the consultation version of the long version of the updated S3 guideline Diagnostics and therapy of oral cavity carcinoma. In addition to the long version, there are the following supplementary documents to this guideline, which have also been or will be updated.

- Short version of the guideline
- Lay version (patient guideline)
- Guideline report on the guideline development process

This guideline and all supplementary documents can be accessed via the following pages.

- Oncology Guideline Program (https://www.leitlinienprogramm-onkologie.de/leitlinien/mundhoehlenkarzinom/)
- AWMF (https://www.awmf.org/leitlinien/detail/ll/007-100OL.html)
- Guidelines International Network (www.g-i-n.net)

1.9. Composition of the Guideline Group

1.9.1. Guideline Coordination

Univ.-Prof. Dr. med. Dr. med. dent. Klaus-Dietrich Wolff

Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie
Klinikum rechts der Isar, Technische Universität München
Ismaninger Str. 22
81675 München
Tel.: 004989 4140-2921
Fax: 004989 4140-4993
klaus-dietrich.wolff[at]tum.de
www.med.tum.de

Assistenz:

Prof. Dr. med. Dr. med. dent. Andrea Rau (FAU Erlangen-Nürnberg)

PD Dr. med. Dr. med. dent. Jochen Weitz (TU München)

Autoren dieser Leitlinie

1.9.2. Participating professional associations and organizations

Table 1: Participating professional associations and organizations

<table>
<thead>
<tr>
<th>Participating professional associations and organizations</th>
<th>Elected Representative(s)</th>
</tr>
</thead>
</table>
| Abteilung Experimentelle Krebsforschung der Deutschen Krebsgesellschaft (AEK) | Prof. Fr. Roland Moll (1)
 | Prof. Dr. Rainer Engers (2) |
| Arbeitsgemeinschaft für Kieferchirurgie (AG Kiefer) | Prof. Dr. Dr. Jürgen Hoffmann (3)
 | Prof. Dr. Dr. Hendrik Terheyden (1)
 | Prof. Dr. Dr. Torsten E. Reichert (2) |
| Arbeitsgemeinschaft Kopf-Hals der Deutschen Röntgengesellschaft (AG Kopf Hals der DRG) | Prof. Dr. Michael Lell (1) |
| Arbeitsgemeinschaft Mund- und Gesichtsschmerz der Deutschen Gesellschaft zum Studium des Schmerzes (DGSS) | Prof. Dr. Marc Schmitter (2)
 | PD Dr. Nikolaos Giannakopoulos (3) |
| Arbeitsgemeinschaft Psychoonkologie der Deutschen Krebsgesellschaft (PSO) | Prof. Dr. Susanne Singer (1)
 | Dr. Helge Danker (1) |
| Arbeitsgemeinschaft Radioonkologie in der DKG (ARO) | Prof. Dr. Rainer Fietkau (1)
 | Prof. Dr. Dr. Esther Troost (3) |
| Arbeitsgemeinschaft Supportive Maßnahmen in der Onkologie, Rehabilitation und Sozialmedizin (ASORS) | Prof. Dr. Dr. Bilal Al-Nawas (3)
 | PD Dr. med. Andreas S. Lübbecke (2) |
| Bundesverband Deutscher Pathologen e.V. (BDP) | Prof. Dr. Stephan Ihrler (3)
 | Prof. Dr. Arne Burkhardt (3) |
| Bundeszahnärztekammer (BZÄK) | Prof. Dr. Katrin Hertrampf (3)
 | Dr. Peter Böhme (2) |
| Charite Comprehensive Cancer Center (CCCC) | Prof. Dr. Ulrich Keilholz (2) |
| Deutsch-Österreichisch-Schweizerischer Arbeitskreis für Tumore im Kiefer-Gesichtsbereich (DÖSAK) | Prof. Dr. Dr. Bernhard Frerich (1)
 | Prof. Dr. Dr. Hans Pistner (1) |
Composition of the Guideline Group

<table>
<thead>
<tr>
<th>Participating professional associations and organizations</th>
<th>Elected Representative(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsche Dermatologische Gesellschaft e.V. (DDG)</td>
<td>Prof. Dr. Roland Kaufmann (3)</td>
</tr>
</tbody>
</table>
| Deutsche Gesellschaft für Hals-, Nasen- und Ohrenheilkunde e.V. (DGHNO) | Prof. Dr. Martin Westhofen (3)
 | | Prof. Dr. Friedrich Bootz (1) |
| Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. (DGHO) | Prof. Dr. Ulrich Keilholz (2)
 | | PD Dr. med. Wilfried Eberhardt (2)
 | | Dr. Thomas Gauler (1) |
| Deutsche Gesellschaft für Mund-, Kiefer- und Gesichtschirurgie (DGMKG) | Univ.-Prof. Dr. med. Dr. med. Klaus-Dietrich Wolff (1)
 | | Prof. Dr. Dr. Hans Pistner (1)
 | | Prof. Dr. Dr. Knut Grötz (2)
 | | Prof. Dr. Dr. Siegmar Reinert (2) |
| Deutsche Gesellschaft für Nuklearmedizin e.V. (DGN) | PD Dr. Klaus Zöphel (3) |
| Deutsche Gesellschaft für Pathologie e.V. (DGP) | Prof. Dr. Stephan Ihrler (1)
 | | Prof. Dr. Arne Burkhardt (1) |
| Deutsche Gesellschaft für Plastische- und Wiederherstellungschirurgie (DGPW) | Prof. Dr. Dr. Raymund Horch (1)
 | | Dr. Andreas Kehrer (3)
 | | Prof. Dr. Günter Germann (2) |
| Deutsche Gesellschaft für Radioonkologie e.V. (DEGRO) | Prof. Dr. Rainer Fietkau (1)
 | | Prof. Dr. Wilfried Budach (1)
 | | Prof. Dr. Dr. Esther Troost (3)
 | | Dr. Michael Wittlinger (2) |
| Deutsche Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) | Prof. Dr. Martin Westhofen (2)
 | | Prof. Dr. Alessandro Bozzato (3) |
Composition of the Guideline Group

Participating professional associations and organizations

<table>
<thead>
<tr>
<th>Participating professional associations and organizations</th>
<th>Elected Representative(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsche Gesellschaft für Zahn-, Mund- und Kieferheilkunde (DGZMK)</td>
<td>Prof. Dr. Dr. Henning Schliephake (1)</td>
</tr>
<tr>
<td>Deutsche Schmerzgesellschaft e.V. (DGSS)</td>
<td>PD Dr. med. Stefan Wirz (1)</td>
</tr>
<tr>
<td>Deutsche Vereinigung für Soziale Arbeit im Gesundheitswesen e.V. (DVSG)</td>
<td>Kirsten Bikowski (2) Kerstin Schmidt (3)</td>
</tr>
<tr>
<td>Deutscher Bundesverband für Logopädie e.V. (DBL)</td>
<td>Frau Ricki Nusser-Müller-Busch (2) PD Dr. Bastian Schilling (3)</td>
</tr>
<tr>
<td>Kassenzahnärztliche Bundesvereinigung (KZBV)</td>
<td>Dr. Jörg Beck (1) Prof. Dr. Katrin Hertrampf (3)</td>
</tr>
<tr>
<td>Konferenz onkologischer Kranken- und Kindererkrankungenpflege, eine Arbeitsgemeinschaft in der Deutschen Krebsgesellschaft e.V. (KOK)</td>
<td>Kerstin Paradies (2) Dr. Norbert Gittler-Hebestreit (2)</td>
</tr>
<tr>
<td>Patientenvertretung</td>
<td>W. Mantey (2) Ingetraud Bönte-Hieronymus (3)</td>
</tr>
</tbody>
</table>

1: 2010-2019
2: 2010-2012
3: 2017-2019

Table 2: Composition of Guideline Workgroups

<table>
<thead>
<tr>
<th>Workgroup</th>
<th>Composition of Workgroup</th>
</tr>
</thead>
</table>
| 1 Epidemiology, risk factors, screening | Prof. Dr. Arne Burkhardt
Prof. Dr. Dr. Torsten E. Reichert |
| 2 Patient information | W. Mantey
Univ.-Prof. Dr. med. Dr. med. Klaus-Dietrich Wolff |
| 3a Diagnosis (clinical and imaging), follow-up | Prof. Dr. Dr. Bernhard Frerich
Prof. Dr. Michael Lell
Prof. Dr. Martin Westhofen |
Workgroup Composition of Workgroup

<table>
<thead>
<tr>
<th>Workgroup</th>
<th>Composition of Workgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>3b Diagnosis (pathology)</td>
<td>Prof. Dr. Arne Burkhardt K. Engers Prof. Dr. Stephan Ihrler Prof. Dr. Dr. Hans Pistner</td>
</tr>
<tr>
<td>4a Surgical therapy (primary tumour)</td>
<td>Prof. Dr. Stephan Ihrler Univ.-Prof. Dr. med. Dr. med. Klaus-Dietrich Wolff</td>
</tr>
<tr>
<td>4b Surgical zherapy (lymph nodes)</td>
<td>Prof. Dr. Dr. Bernhard Frerich Prof. Dr. Stephan Ihrler Prof. Dr. Dr. Torsten E. Reichert</td>
</tr>
<tr>
<td>5 Reconstruction, rehabilitation, logopedics</td>
<td>Kirsten Bikowski Prof. Dr. Dr. Raymund Horch Frau Ricki Nusser-Müller-Busch Prof. Dr. Martin Westhofen Univ.-Prof. Dr. med. Dr. med. Klaus-Dietrich Wolff</td>
</tr>
<tr>
<td>6 Radiation therapy</td>
<td>Prof. Dr. Wilfried Budach Prof. Dr. Rainer Fietkau Dr. Thomas Gauler Prof. Dr. Dr. Knut Grötz Dr. Michael Wittlinger</td>
</tr>
<tr>
<td>7 Drug therapy</td>
<td>Wilfried Eberhardt Prof. Dr. Ulrich Keilholz</td>
</tr>
<tr>
<td>8 Supportive therapy, psychooncology</td>
<td>Kirsten Bikowski Prof. Dr. Dr. Knut Grötz PD Dr. med. Andreas S. Lübbe Prof. Dr. Marc Schmitter Susanne Singer PD Dr. med. Stefan Wirz</td>
</tr>
</tbody>
</table>

1.9.3. Patient Involvement

The guideline was developed with the direct involvement of patient representatives (see listing in chapter 1.9.2).)

1.9.4. Methodological Support

Via German Guideline Program in Oncology (GGPO):

- Dr. M. Follmann MPH MSc (OL-Office), Berlin
- Dipl.-Soz.Wiss. T. Langer (OL-Office), Berlin
- Dr. S. Blödt, MScPH (AWMF) · Prof. I. Kopp (AWMF)

Via external contractors:

- Prof. Dr. A. Nast, (Division of Evidence Based Medicine), Berlin
1.10 Abbreviations Used

Table 3: Abbreviations Used

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>Explanation</td>
</tr>
<tr>
<td>5-FU</td>
<td>5-fluorouracil</td>
</tr>
<tr>
<td>AEK</td>
<td>Working Group for Experimental Cancer Research</td>
</tr>
<tr>
<td>AWMF</td>
<td>consortium of scientific medical societies</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>CUP</td>
<td>Cancer of unknown primary</td>
</tr>
<tr>
<td>DGMKG</td>
<td>German Society for Oral and Maxillofacial Surgery</td>
</tr>
<tr>
<td>DKG</td>
<td>German Cancer Society</td>
</tr>
<tr>
<td>DÖSAK</td>
<td>German-Austrian-Swiss Working Group for Tumours in the Maxillofacial Region</td>
</tr>
<tr>
<td>DVSG</td>
<td>German Association for Social Work in Health Care</td>
</tr>
<tr>
<td>FDG-PET-CT</td>
<td>Fluorodeoxyglucose positron emission tomography- Computed tomography</td>
</tr>
<tr>
<td>FNB</td>
<td>Fine needle biopsy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HPV</td>
<td>human papilloma virus</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>IMRT</td>
<td>Intensity modulated radiotherapy</td>
</tr>
<tr>
<td>IQWiG</td>
<td>Institute for Quality and Efficiency in Health Care</td>
</tr>
<tr>
<td>LK</td>
<td>Lymph nodes</td>
</tr>
<tr>
<td>LL</td>
<td>Guideline</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>ND</td>
<td>neck dissection</td>
</tr>
<tr>
<td>NHS</td>
<td>National Health Service</td>
</tr>
<tr>
<td>OL</td>
<td>DKG guideline programme on oncology</td>
</tr>
<tr>
<td>PDL</td>
<td>Programs death ligand</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>r/mSCCHN</td>
<td>Recurrent or metastatic head and neck squamous cell carcinoma</td>
</tr>
<tr>
<td>RCT</td>
<td>Radiotherapy/ Radiochemotherapy</td>
</tr>
<tr>
<td>SIGN</td>
<td>Scottish Intercollegiate Guidelines Network</td>
</tr>
<tr>
<td>SLN</td>
<td>Sentinel Lymph Node (Engl.: sentinel lymph node)</td>
</tr>
<tr>
<td>TNM (eng)</td>
<td>Tumor Nodes Metastases</td>
</tr>
<tr>
<td>UICC</td>
<td>Union international contre le cancer</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
2. Introduction

2.1. Scope and Purpose

2.1.1. Objective and Key Questions

The aim of this updated guideline is to optimize the patient's perspective by implementing the advances in diagnostics and therapy that have become possible in recent years, for example in imaging, molecular diagnostics or reconstructive procedures. An adequate interdisciplinary approach is crucial in order to achieve an improved prognosis and also an improved post-therapeutic quality of life. The present guideline is an instrument that provides the basis for clear, treatment-relevant decision-making processes. It is intended to help ensure that the therapy of patients with oral cavity carcinoma is implemented at a scientifically proven, high level and across the board in the general population.

The present guideline was developed according to the current state of the scientific literature and the results of international studies. In addition to the systematic search and appraisal of primary studies, the initial version on which this update is based identified an evidence-based source guideline, the SIGN 90 guideline of the National Health Service (NHS) Scotland, whose recommendations have been incorporated [5]. Specific questions to be answered by a de novo search using the latest current literature were related to the following topics:

1. does the sentinel lymph node (SLN) play a role in oral squamous cell carcinoma?
2. Is modified radical neck dissection plus adjuvant radiotherapy superior to selective neck dissection with adjuvant radiotherapy for proven LK involvement in level IIb or III?
 i. Comparison of level I-III neck dissection with level I-V neck dissection with N1 subgroup analysis or >50% N1 in the patient population.
 ii. Is additional level IV and V neck dissection for LK involvement in level III or IIb preferable to dissection only to level III?
3. Is there an indication for neck dissection in cT1/cT2 carcinoma of the maxilla, even if there is a concomitant cN0 neck on imaging? (Neck Dissection versus „wait and see“ under imaging).
4. What are the indications for neoadjuvant therapy in the treatment of oral cavity carcinoma stage T3/4 Nx M0?
 i. Is neoadjuvant radiochemotherapy superior to adjuvant radiochemotherapy?
5. Is there an indication for adjuvant radiochemotherapy in pT1/pN1 squamous cell carcinoma?

In addition, other key questions were formulated that were found to be significant based on experience with the guideline initial version. After preparation in working groups, these questions were answered by expert consensus and corresponding statements or recommendations were formulated. With the help of explanations added in background texts, it is also made possible for colleagues outside the field to inform patients about the procedure of the specialists and to advise them about concomitant symptoms or risks of the therapy. Thus, this guideline provides a scientifically validated treatment recommendation for oral cavity carcinoma which, in
the opinion of the authors, will lead to an improvement in the prognosis of the affected patients if applied consistently.

2.1.2. **Target Audience**

The recommendations of this guideline are primarily addressed to all those who are active in the prevention, diagnosis, therapy and aftercare of oral cavity carcinoma in the outpatient and inpatient sector. The addressees are thus mainly physicians for oral and maxillofacial surgery, otorhinolaryngology, radiotherapy, oncology, but also especially dentists and specialists for oral surgery as well as dermatologists. According to the general definition, the guideline is intended to provide decision-making aids, but not to be a guideline. The treating physician or dentist is still obligated to find a course of action appropriate to the individual situation, taking into account the patient's overall situation and together with the patient. It is nevertheless recommended that deviations from the guideline be justified and recorded.

The guideline should also be made available to general practitioners and higher-level organizations (e.g. health insurance funds or institutions of medical self-administration) as well as the interested professional public for information purposes.

2.1.3. **Validity and Update Process**

The S3 guideline is to be updated continuously. The validity period is estimated to be 5 years. A revision will take place in 2024 at the latest. If there is an urgent need for changes in the meantime, updates will be published as new versions.

Comments and hints for the update process from the practice are explicitly desired and can be sent to the following address: mundhoehlenkarzinom@leitlinienprogramm-onkologie.de

2.2. **Methodology**

The methodological approach used in the preparation of the guideline is described in the guideline report.

2.2.1. **Levels of Evidence (LoE)**

Scheme of evidence grading according to SIGN

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1++</td>
<td>High-quality meta-analyses, systematic reviews of RCTs, or RCTs with very low risk of systematic error (bias).</td>
</tr>
<tr>
<td>1+</td>
<td>Well conducted meta-analyses, systematic reviews of RCTs, or RCTs with low risk of systematic error (bias)</td>
</tr>
<tr>
<td>1-</td>
<td>Meta-analyses, systematic reviews of RCTs, or RCTs with high risk of systematic error (bias)</td>
</tr>
</tbody>
</table>
2.2 Methodology

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-</td>
<td>All-or-none</td>
</tr>
<tr>
<td>2++</td>
<td>High quality systematic reviews of case-control or cohort studies or High-quality case-control or cohort studies with very low risk of systematic bias (confounding, bias, „chance“) and high probability of causal relationship</td>
</tr>
<tr>
<td>2+</td>
<td>Well-conducted case-control or cohort studies with low risk of systematic bias (confounding, bias, „chance“) and moderate probability that the relationship is causal</td>
</tr>
<tr>
<td>2-</td>
<td>Case-control or cohort studies with a high risk of systematic bias (confounding, bias, „chance“) and a significant risk that the relationship is not causal.</td>
</tr>
<tr>
<td>3</td>
<td>Non-analytic studies, e.g. case reports, case series</td>
</tr>
<tr>
<td>4</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

2.2.2. Grades of Recommendation (GoR)

The methodology of the Guideline Program in Oncology provides for the assignment of grades of recommendation (see the following Table Scheme of recommendation grading) by the guideline authors within the framework of a formal consensus process. Accordingly, AWMF-certified guideline consultants conducted moderated, nominal group processes or structured consensus conferences [6]. During these processes, recommendations were formally voted on by the voting mandate holders (see above). The results of the respective votes (consensus strength) are assigned to the recommendations according to the categories in Table Consensus strength assigned to the recommendations.

Table Scheme of recommendation grading

<table>
<thead>
<tr>
<th>Recommendation grade</th>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Strong recommendation</td>
<td>shall/shall not</td>
</tr>
<tr>
<td>B</td>
<td>Recommendation</td>
<td>should/should not</td>
</tr>
<tr>
<td>0</td>
<td>Recommendation open</td>
<td>can</td>
</tr>
</tbody>
</table>
2.2 Methodology

Table consensus strength

<table>
<thead>
<tr>
<th>Consensus Strength</th>
<th>Percentage consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong consensus</td>
<td>> 95% of those voting</td>
</tr>
<tr>
<td>Consensus</td>
<td>> 75 – 95% of those voting</td>
</tr>
<tr>
<td>Majority Consent</td>
<td>> 50 – 75% of those eligible to vote</td>
</tr>
<tr>
<td>Dissent</td>
<td>< 50% of those entitled to vote</td>
</tr>
</tbody>
</table>

The decision criteria for determining the grades of recommendation are explained in the guideline report for this guideline.

2.2.3. Statements

Statements are statements or explanations of specific facts or questions without an immediate call for action. They are adopted in accordance with the procedure for recommendations within the framework of a formal consensus process and can be based either on study results or on expert opinions.

2.2.4. Expert Consensus (EK)

Statements/recommendations that were decided by the guideline group on the basis of expert consensus (not on the basis of a systematic search or guideline adaptation) are identified as such with the grading „EK“. No symbols or letters were used for the graduation of the expert consensus; the strength of the expert consensus results from the wording used (should/should/could) according to the gradation in the table for the gradation of recommendations.

2.2.5. Independence and Disclosure of Possible Conflicts of Interest

The German Cancer Aid (Deutsche Krebshilfe) provided the financial means for the preparation and updating of the present guideline via the Guideline Programme in Oncology (OL). The development of the guideline was editorially independent of the funding agencies; there were no additional sponsors.

The financial resources were used exclusively for personnel costs, commissioning of the external evidence review, office supplies, literature procurement, and for the WG meetings and consensus conferences (rent, technology, catering, moderator fees, travel and hotel costs).

A standardized declaration (AWMF form, version 2.2 as of 06/2016) on facts and relationships that may indicate conflicts of interest was obtained from all members of the guideline group. The information on conflicts of interest was assessed by a working group with regard to its relevance for the guideline process and management of conflicts of interest was defined. Full details of conflict of interest management can be found in the guideline report.
3. Methodologies

4. Risk factors

4.1. Nicotine and alcohol abuse

3.1 Evidence-based Statement checked 2021

<table>
<thead>
<tr>
<th>Tobacco use is a major risk factor for the development of oral cavity carcinoma.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
</tr>
</tbody>
</table>

| LoE | [15]; [16]; [17]; [18]; [19]; [20]; [21]; [22]; [23]; [24] |
|---|
| 2+ |

<table>
<thead>
<tr>
<th>Strong Consensus</th>
</tr>
</thead>
</table>

3.2 Evidence-based Statement checked 2021

<table>
<thead>
<tr>
<th>Alcohol consumption is a major risk factor for the development of oral cavity carcinoma.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
</tr>
</tbody>
</table>

| LoE | [25]; [26] |
|---|
| 2++ |

<table>
<thead>
<tr>
<th>Consensus</th>
</tr>
</thead>
</table>

Background

The main risk factors for the occurrence of oral cavity carcinoma are chronic tobacco or alcohol abuse, and much less frequently other factors. Chronic tobacco or alcohol abuse increases the risk of disease up to 6-fold, and a combination of both risk factors increases the risk up to 30-fold [40], [15], [29]. For lip carcinoma, lip contact with cigarettes is also considered a major risk factor, regardless of the total amount of tobacco use [27]. Furthermore, the use of chewing tobacco is a predisposing factor for the development of oral cavity carcinoma [28]. In addition to the use of tobacco or alcohol, an unbalanced diet, such as excessive consumption of meat or fried food, may also increase the risk of developing carcinoma in the oral cavity [30], [31], [32], [33]. Conversely, a balanced Mediterranean diet has been shown to more than halve the risk of developing carcinoma in the oral cavity when adjusted for nicotine consumption and BMI [34].

The key protective elements of the Mediterranean diet are citrus fruits, vegetables - especially fresh tomatoes - olive oil and fish oils [35], [36], [37], [38]. Increasing the intake of polyunsaturated fatty acids to 1 g/week also reduces the risk of oral cavity carcinoma [39].
3.3 Consensus-based Recommendation checked 2021

EC
The addressees of this guideline should advise their patients to give up tobacco consumption and to reduce alcohol consumption to a large extent.

Strong Consensus

4.2 Other risk factors

<table>
<thead>
<tr>
<th>3.4</th>
<th>Evidence-based Statement modified 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>HPV diagnosis has no valid utility as a prognostic factor in oral squamous cell carcinoma.</td>
</tr>
<tr>
<td>LoE 2+</td>
<td>[41]; [42]; [43]</td>
</tr>
</tbody>
</table>

Consensus

Background

If a predominantly white lesion of the oral mucosa is found that cannot be assigned to another precisely identifiable lesion, it is a leukoplakia, some of which will transfer to carcinoma [54], [57]. In the WHO classification of head and neck tumors (2005), the concept of squamous intraepithelial neoplasia (SIN) is applied to precursor lesions of squamous cell carcinoma. The term intraepithelial neoplasia is equivalent to the old term epithelial dysplasia and is to be preferred, as the potentially neoplastic character of the lesions is thus also reflected in the nomenclature. To improve readability, the term precursor lesion is used uniformly in the following text instead of the otherwise very different terms (precancerous lesion, precancerous lesion, potentially malignant lesion, precursor lesion, etc.).

A distinction is made between low-grade, moderate-grade and high-grade intraepithelial neoplasia in analogy to the grades of dysplasia [59], [62], [64] In this nomenclature, high-grade intraepithelial neoplasia [64] corresponds to the old term carcinoma in situ (carcinoma risk of 90%). Leukoplakia must be closely monitored for dignity, if necessary by repeated histological or cytological examinations. Complete removal is recommended for dysplastic lesions. As a general rule, any mucosal change that persists for longer than 2 weeks is suspicious of tumor and must be clarified.

The diagnosis and management of precursor lesions is dealt with in a separate guideline (AWMF 007-092).

In addition to the factors mentioned above, there is evidence to suggest that genetic predisposing factors may also favour the development of carcinomas in the head and neck region; for the identification of these risk factors there are currently no screening methods available [65], [66], [67], [68], [70]. Multiple prospective and retrospective studies have addressed HPV association in head and neck carcinomas to investigate the etiological significance and prognostic significance in the respective localizations [80], [53], [71], [70].

Detection of high-risk HPV DNA in the oral cavity varies from 4 to 43% in different studies ([75], [50], [79], [73], [72]), with HPV16 being the most commonly detected...
4.2 Other risk factors

high-risk HPV type. HPV18 as well as other high-risk types were rarely detected in oral cavity carcinomas ([77], [51], [68]). The high discrepancy between p16 immunohistochemistry or HPV RNA and HPV DNA detection indicates that HPV DNA is frequently detectable in this location but is probably not biologically active in the majority of cases [74]. Data with combined HPV detection methods from retrospective studies are often lacking. Simultaneous DNA, RNA, and/or p16 testing have significantly lower detection rates [44]. In the largest systematic study to date with 3680 patients with head and neck carcinomas, in which 1264 oral cavity carcinomas were investigated, HPV DNA could be detected in 7.4% (n = 93) of cases. However, the simultaneous detection rate of HPV DNA and HPV RNA was only 3.9% (n = 49) and decreased to 3.0% (n = 38) with simultaneous detection of HPV DNA and HPV RNA and p16 [44].

Also, several retrospective and prospective serologic studies for various HPV16 antibodies show only a small increased risk of disease for oral cavity carcinoma, in contrast to oropharyngeal carcinoma. The prevalence of HPV16 E6 or E7 antibodies in oral cavity carcinomas ranged from 0 to 13.9% in patients, and from 0.5 to 11.1% in matched controls ([56], [49], [55]). In several case-control studies embedded in prospective cohort studies, the relative risk of developing oral cavity carcinoma was not significantly increased in the presence of E6 or E7 antibodies ([56], [55]). The same was true for L1 antibodies, which were not significantly associated with the development of oral cavity carcinoma, with relative risks ranging from 1.0 to 1.2 ([56], [55]). The risk of developing oral cavity carcinomas is thus significantly lower than that for oropharyngeal carcinomas, where the risk is significantly increased 2.4 to 274-fold in the presence of E6 or E7 antibodies ([56], [55], [60]).

The prevalence of HPV-driven tumors in the oral cavity is estimated to be less than 5% based on current studies; higher estimates in older literature are predominantly based on HPV DNA detection alone, which in most cases is attributed to transient infection in the oral cavity or a false positive test result. The use of combined HPV detection methods (e.g., DNA detection combined with RNA detection or p16 immunohistochemistry) is strongly recommended ([78]). Furthermore, in advanced tumor stage, clinical differentiation between oral cavity carcinoma and oropharyngeal carcinoma may be difficult, thus falsifying the actual proportion of HPV-associated oral cavity carcinomas. A valid statement on the prognostic significance of HPV association in patients with oral cavity carcinoma does not exist. Rather, the different studies show contrasting results (good prognosis: [76], [47], [45], [63]; poor prognosis: [52], [46], [61]; no influence: [51], [74], [58], [48], [81]). In 3 RTOG studies as well as in the DAHANCA consortium (Denmark), no improved survival rates regarding HPV status in non-oropharyngeal carcinomas in contrast to patients with HPV-associated oropharyngeal carcinomas could be found either ([58], [45]). Clinical studies on de-intensified therapy concepts in HPV-associated oral cavity carcinomas do not seem useful due to the lack of prognostic significance of HPV status, and thus no adaptation of therapy compared to noxious-associated carcinomas.

Thus, HPV status does not play a role as a prognostic factor in oral cavity carcinoma according to current studies. In summary, there is no evidence that justifies routine HPV diagnostics in patients with oral cavity carcinoma.
5. Screening and prevention

5.1. Screening

<table>
<thead>
<tr>
<th>4.1</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Dental and medical examinations shall include an inspection of the entire oral mucosa in every patient.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

Background

Since the growth of tumors is often painless in the beginning, it is not uncommon for patients to present for clarification of the findings only after a delay of several weeks. This behavior of the patients causes a delayed diagnosis and is the main reason for a delay in the start of treatment [82], [83], [84]. Another reason for a delayed start of treatment is the misinterpretation of the findings, e.g. as a pressure sore or bite injury. Therefore, it cannot be assumed that changes in the oral mucosa are perceived by the patient himself or interpreted as threatening. Regular examination of the oral mucosa, not only in the dental practice but also by maxillofacial surgeons and ENT or general practitioners as well as dermatologists (especially in the context of skin cancer screening, which includes the oral cavity), is therefore of major importance in terms of tumor screening and early detection. This is especially true for patients with already known typical risk factors or predisposing diseases of the oral mucosa.

In order to detect tumor growth at the earliest possible stage, the use of toluidine blue as a screening method has been tested; however, this measure has not been found to be effective for initial diagnosis at the dentist's office [85]. On the value of brush biopsy, which is available as an easy-to-use technique in dental practice, the S2k guideline on the diagnosis and treatment of precursor lesions is discussed. Currently, there is no evidence for an effective screening program for the detection or early detection of head and neck cancer [86].

5.2. Prevention

<table>
<thead>
<tr>
<th>4.2</th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoR</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Education about signs, symptoms, and risk factors of oral cavity carcinoma shall be improved.</td>
<td></td>
</tr>
<tr>
<td>LoE</td>
<td>1+</td>
<td>[87]</td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

Background

Public awareness of oral cavity carcinoma is low [80], [93], [88], [89], [90]. It has been shown that the availability of information about oral cavity carcinoma in written form...
Clinical examination

6. Primary diagnostics

6.1. Clinical examination

<table>
<thead>
<tr>
<th>5.1</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>All patients with an unclear mucosal change lasting more than two weeks shall be referred immediately to a specialist for clarification.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.2</th>
<th>Consensus-based Statement</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>In order to exclude synchronous secondary tumors, an examination of the ear, nose and throat - and possibly endoscopy - shall be performed as part of the primary diagnosis of oral cavity carcinoma.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

Background

Any change of the oral mucosa with excess tissue and/or tissue defect as well as a change in color or hardening of the mucosa are suspicious for squamous cell carcinoma. Typically, there is a central ulcer with a peripheral rim and whitish (leukoplakic) deposits due to keratinization, which may also be completely absent. All areas, especially the tongue and the floor of the mouth, may be affected. Early findings present e.g. as nodular epithelial thickening or a flat surface defect. Later, there is a two-dimensional spread or even a deep cone-shaped growth. A loosening of the teeth or a swelling of the lymph nodes in the neck may be present initially already, which can be confused with inflammatory diseases, such as periodontitis or lymphadenitis. Progressive tumour growth leads to functional impairments such as difficulties in mouth opening, swallowing, chewing or speaking, as well as to nutritional disorders; in some cases, the tumour may break into the jawbone with fracture or break through to the outer skin. Severe pain develops, also radiating into the entire head and neck region. In up to 40% of patients, despite clinically unremarkable findings, the neck lymph nodes have already been affected at the time of initial diagnosis; systemic tumour spread, especially to the lungs, is also possible. If simultaneous involvement of several regions of the oral cavity or pharynx is present, the term multilocular tumor growth is used. For this reason, and because of a possible presence of synchronous risk factors, the level of knowledge of patients and leads to an increased willingness to undergo preventive examinations in the dental practice [91], [92]. A randomized controlled trial showed that patients who had read an information leaflet about carcinomas in the head and neck region avoided the typical risk factors more than those who had not been provided with such a leaflet. A questionnaire about symptoms and risks of oral cavity carcinoma could be answered with significantly better results by those who had read an information leaflet than by a non-educated control group [87]. Thus, it should be demanded that educational brochures about symptoms and risk factors of oral cavity carcinoma should be available at medical and dental facilities.
second carcinomas in the region of the pharynx or larynx [97], [99], [98], mirror examination or an endoscopy [101], [102], [103], [104], [105], [107] belongs to the primary clinical diagnosis in oral cavity carcinoma.

Detection rates of second cancers by panendoscopy in the primary diagnosis of oral cavity carcinoma are reported to be in the single digits according to recent studies: 1.1% ([96]), 5.56% ([106]), for populations with no history of risk again significantly lower down to 0% ([100]). Disadvantages of panendoscopy include anesthesiologic complications and surgical complications such as esophageal perforation, bleeding, and dental fractures. Critically discussed is a delay in the start of tumor therapy due to a preceding panendoscopy ([94], [109]). Panendoscopy should therefore only be performed as part of the primary diagnosis of oral cavity carcinoma in order to exclude synchronous secondary tumours if there are conspicuous findings in terms of specular or radiological findings.

The guideline group sees a great need for research to clarify the value of panendoscopy for the detection of secondary tumors.

Other symptoms of oral cavity carcinoma may include foetor, bleeding, obstruction of denture fit, numbness, or loss of adjacent teeth. Common symptoms include fatigue, loss of performance, loss of appetite, and weight loss. Immediate referral to a specialist should be made for the following findings if they persist for more than two weeks [108]:

- white or red patches on the oral mucosa at any location
- presence of a mucosal defect or ulceration
- swelling of the oral cavity
- unexplained loosening of teeth not associated with periodontal disease
- persistent, especially unilateral foreign body sensation
- pain
- dysphagia or pain when swallowing
- difficulty in speaking
- decreased tongue mobility
- numbness of the tongue, teeth or lip
- unexplained bleeding
- swelling of the throat
- foetor
- difficulty in speaking
- decreased tongue mobility
- numbness of the tongue, teeth or lip
- unexplained bleeding
- swelling of the throat
- foetor
- change in occlusion

Early detection and early treatment improve the prognosis of oral cavity carcinoma [95]. More intensive public education and accelerated referral of patients with unclear findings to specialists is desirable to shorten the time interval from the first symptom to the initiation of tumor-specific treatment [82], [83], [84].

Imaging techniques and further diagnostics

The diagnosis of oral cavity carcinoma includes not only clinical examination but also imaging measures such as ultrasound diagnostics, CT or MRI, X-ray thorax or CT thorax; furthermore, PET/CT can be used for special indications. As basic dental diagnostics, a panoramic slice image should be available for the assessment of the dental status, also with regard to a possible radiation therapy.
7.1 Imaging methods for the diagnosis of the primary tumor

6.1 Evidence-based Recommendation

GoR B

CT or MRI should be performed to determine the local extent of oral cavity carcinoma.

LoE 3

[110]; [111]; [112]

Strong Consensus

6.2 Consensus-based Recommendation

EC

In order to avoid distortions of the contrast medium behaviour at the primary tumour, tumour biopsy should only be performed after the imaging of the slice.

Consensus

6.3 Consensus-based Recommendation

EC

The panoramic slice image is part of the basic dental diagnostics and should be available before the start of specific tumor therapy.

Consensus

6.4 Consensus-based Recommendation

EC

If metal artifacts are expected in the oral cavity, MRI should be preferred to CT for evaluation of the primary tumor.

Strong Consensus

6.5 Evidence-based Statement

ST

There is conflicting and no robust evidence for the superiority of CT or MRI for the assessment of bone invasion by carcinoma of the oral mucosa.

LoE 3

[113]; [114]

Consensus
6.6 Evidence-based Statement checked 2021

ST

There is conflicting and no robust evidence for the superiority of CT or MRI to assess the extent of the primary tumor.

LoE 3

[110]; [111]; [113]; [115]

Strong Consensus

6.7 Evidence-based Statement checked 2021

ST

There is no established evidence for the superior test performance or additional benefit of cone beam CT (dental CT) over panoramic slice imaging for the assessment of mandibular bone invasion.

LoE 3

[116]

Strong Consensus

6.8 Evidence-based Statement checked 2021

ST

PET-CT has no value in the primary diagnosis of the local extension of a known oral cavity carcinoma.

LoE 2+

[117]; [118]; [119]; [120]; [121]; [122]; [123]

Strong Consensus

6.9 Consensus-based Statement new 2021

ST

In locoregionally advanced tumors, FDG-PET/CT can be performed to exclude distant metastases prior to function-restricting therapeutic measures.

Consensus

Background

Although panoramic slice imaging for the evaluation of the dental system as a simple, quickly available and clear overall view is still part of basic dental diagnostics, it is not considered sufficient for the evaluation of bone invasion on the maxilla or mandible [138]. CT or MRI should be performed to diagnose squamous cell carcinoma of the oral cavity and determine the T category [125], [126], [127], [139], [140]. Although PET-CT can occasionally be helpful for the diagnosis of an unknown primary tumor or for the determination of the glucose metabolism of a tumor that has already been pretreated by radiotherapy, as well as in cases of CT artifacts, it has no role in defining the tumor...
7.2 Diagnostic imaging techniques for the detection of metastasis

Margins of known, nonpretreated oral cavity carcinomas [141], [142], [143]. PET-CT, despite its high sensitivity, has no improved significance for the diagnosis of primary tumors of the oral cavity and therefore cannot replace the established procedures CT or MRI [131], [132], [134], [144], [133], [135], [136].

The role of FDG-PET/CT in the diagnosis of recurrence is discussed in Chapter 9.7.

The literature is inconsistent regarding the superiority of CT or MRI for the diagnosis of the primary tumor in the oral cavity. A number of authors consider MRI to be the method of choice because of its higher sensitivity; other publications consider CT to be better or at least equivalent [129], [128]. The CT examination is generally better tolerated by patients than the MRI examination because of the short examination time [125], [145]. Factors in favour of MRI are: better soft tissue contrast with higher detail recognition of soft tissues and superficial structures and, above all, the lower artefacts caused by metallic dental fillings or implants [126]. This is reflected in an improvement in the detection of perineural, intramuscular [145] or perivascular tumor extension, as well as the assessment of involvement of the skull base, orbit or cervical spine [110]. CT is considered advantageous for cortical erosion [129], and MRI for the assessment of bone marrow infiltration [130]. While CT is occasionally considered advantageous for the assessment of cortical erosion [113], MRI provides better visualization of perineural, intramuscular [145], [125] or perivascular tumor extension as well as more accurate diagnosis of any involvement of the skull base, orbit or cervical spine. It has been shown that CT is perceived as more comfortable than MRI due to the faster examination technique [145].

There is no evidence for a better assessability of tumor invasion into the bone by the 18F-FDG-uptake at PET-CT [131], [137]. A combination of the examination modalities CT, MRI and PET-CT does not lead to a significant improvement [146].

The meta-analysis by Kyzas et al. [124] published in 2008 included 32 studies on the diagnostic value of FDG-PET/CT in patients with a head and neck tumor. For cN0 patients, the sensitivity of FDG-PET alone was 50% (95% CI = 37-63%), and the specificity was 87% (95% CI = 76-93%). In studies with FDG-PET and anatomic imaging, the respective sensitivities and specificities were 80%/86% and 75%/79%, but not specified for cN0 patients.

7.2. Diagnostic imaging techniques for the detection of metastasis

<table>
<thead>
<tr>
<th>GoR</th>
<th>Evidence-based Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>To determine the N category, the entire region from the skull base to the upper thoracic aperture shall be examined with CT or MRI.</td>
</tr>
</tbody>
</table>

LoE 2+

[110]; [147]; [148]; [149]; [150]; [151]; [152]

Strong Consensus

© German Guideline Program in Oncology | Evidence-based Guideline oral cavity cancer - V3.0 | January 2021
6.11 Evidence-based Statement checked 2021

ST The diagnostic specificity of lymph node staging in the neck can be improved by ultrasound-guided fine-needle biopsy.

LoE 2++ [153]; [154]; [155]

Strong Consensus

6.12 Evidence-based Statement checked 2021

ST The diagnostic specificity and sensitivity of lymph node staging in the neck can be improved by FDG-PET-CT.

LoE 2+ [156]; [157]; [158]; [118]; [159]; [150]; [151]; [160]; [161]

Strong Consensus

Background

CT and MRI are of similar accuracy for the diagnosis of cervical lymph node metastases; they are clearly superior to clinical examination [149]. Here, CT appears to be slightly more reliable than MRI for visualizing infrahyoid lymph node metastases, while the latter appears to better visualize nodes along the vascular nerve sheath [125], [176]. MRI is therefore recommended for routine diagnosis to determine soft tissue infiltration and lymph node status [177]. In a direct comparison study, MRI performed better than CT in terms of sensitivity, specificity and accuracy for the determination of cervical lymph node metastases [152]. In combination with FDG-PET, the diagnostic accuracy of MRI can be increased [151], without, however, allowing a reliable statement on the dignity of the detected lymph nodes [178], [164], [165]. In principle, however, PET is much less informative as a stand-alone method than in combination with CT or MRI [144], [178], [162], [166] and should therefore always be performed as a hybrid procedure (PET-CT or PET-MRI).

The accuracy of CT, MRI and ultrasound in the assessment of lymph node metastases is comparable, although the data on this is sparse. In borderline large lymph nodes (short diameter > 5mm) on CT or MRI without signs of central necrosis, targeted ultrasound-guided fine-needle biopsy or FDG-PET may increase diagnostic accuracy [180], [181]. However, the value of PET-CT for the diagnosis of cervical lymph nodes is controversial because of the high number of false positive findings [132], [136], [137], [124], [164], [167], [168], [169], [170]. Especially for lymph nodes less than 10 mm this method is considered unsuitable [169], [170].

A standard method for the assessment of cervical lymph nodes is ultrasound examination, for which individual studies have reported higher sensitivity and specificity than for CT [171] or MRI [172]. It is an inexpensive method that is frequently repeatable in follow-up, but its accuracy and significance are highly dependent on the experience of the examiner. However, other studies indicate that the reliability of ultrasound staging of the neck is limited because of low specificity [173].
Few studies addressed the sensitivity of ultrasound-guided fine-needle biopsy (FNB) for determining LK dignity. While the sensitivity of this method is low in small tumors with clinical N0 neck [174], [175], it can be helpful in palpable LK for preoperative confirmation of dignity [179], [180], [181], [163]. In palpable lymph nodes, ultrasound-guided fine-needle aspiration has a higher specificity than CT [158], but overall no higher diagnostic reliability [153].

7.3. Imaging and diagnostics to exclude synchronous second tumors, distant metastases, unknown primary tumors (CUP) and recurrences

<table>
<thead>
<tr>
<th>6.13</th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoR</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In patients with advanced oral cavity carcinoma (stage III, IV), a chest CT shall be performed to exclude pulmonary tumor involvement (filia, second carcinoma).</td>
<td></td>
</tr>
<tr>
<td>LoE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[182]; [183]; [184]; [185]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.14</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>An abdominal ultrasound examination can be performed as part of the primary diagnostic workup.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.15</th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoR</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In patients with suspected recurrence in the head and neck region, PET-CT can be performed if this could not be confirmed or eliminated with CT and/or MRI.</td>
<td></td>
</tr>
<tr>
<td>LoE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[186]; [187]; [188]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.16</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>In patients with suspected recurrence in the head and neck region, sonography of the head and neck region can be indicated to substantiate the indication for further measures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>
Background

The incidence of synchronous second tumors or distant metastases in carcinomas of the oral cavity ranges from 4% to 33%, depending on the size of the primary tumor, with a particularly high incidence in stages T3/T4 and patients with lymph node involvement in level IV [194], [195], [196]. However, in other retrospective studies, pulmonary secondary carcinoma was detected in only 3.5% and 3.8% of newly diagnosed carcinomas of the oral cavity, leading the authors to question regular use of chest CT as part of primary staging [197], [198]. As the T category increases, a higher probability of the presence of a second tumor of the lung has been demonstrated [112]; therefore, in advanced tumors (T3/T4), a chest CT is already recommended as part of the diagnosis of the primary tumor [183]. Both LK metastases and a pulmonary second carcinoma can be detected by CT with high sensitivity and specificity [182]. In patients with suspected recurrence in the head and neck region, sonography of the head and neck region may also be indicated to justify the need for further measures [171]. In comparison with bone scintigraphy and abdominal ultrasound, CT proved to be the safest screening method for the detection of distant metastases [183]. This also applies with high significance to the comparison of thoracic CT with conventional radiography of the lung [182], where CT detected either metastasis or synchronous second carcinoma in approximately 11% of cases and was recommended as a screening method for patients with advanced primary tumor [185]. Due to its high sensitivity and the preferential localization of second tumors in the lung, chest CT is even recommended for all patients with head and neck tumors to exclude synchronous second carcinomas [123], [202], [190], [191].

In a study by the Institute for Quality and Efficiency in Health Care, a benefit assessment of positron emission tomography (PET and PET/CT) for head and neck tumors was performed. The primary objective was to assess the benefit of the method in metastatic cervical lymphadenopathy for the detection of the unknown primary tumor (CUP syndrome). In addition, the extent to which PET or PET/CT is superior to standard diagnostic procedures without PET was reviewed. For this purpose, a systematic database analysis was performed, whereby only one usable comparative study could be identified with regard to recurrence-free 2-year survival, with which a patient-relevant benefit of PET was neither proven nor refuted [118]. For the question of staging of the primary tumor, CT and SPECT showed a higher specificity compared to PET, especially for the detection of bone invasion [117]. PET also did not perform better than CT or MRI for the diagnosis of cervical lymph node metastases, while for the detection of distant metastases PET tended to have a higher sensitivity than CT [189].

For recurrence detection, the few usable studies identified by IQWiG in the technology comparison PET vs. combination of CT and/or MRI showed that PET had a significantly higher pooled sensitivity than the combination of CT and/or MRI. Here, specificity is reduced by false positive findings due to enhancement in inflammatory lesions. However, FDG-PET had a higher reliability with a sensitivity of 100% and a specificity of 61-71% than CT and/or MRI [165], [192], [193]. Also for the detection of an unknown primary tumor, a good pooled sensitivity was shown with 84% for PET/CT, which is why the assumption was made that both the combination with CT as well as PET alone is able to diagnose additional primary tumors after expired primary diagnosis with CT and/or MRI. This is also confirmed by other studies, according to which FDG-PET not only diagnoses distant metastases more reliably, but also detects 24-26% more primary tumors than CT or MRI [199], [200], [201].
8. Biopsy and histopathology

7.1 Consensus-based Recommendation checked 2021

EC The sample shall be taken from the periphery of the tumor and be representative.
Clinically relevant information shall be provided to the pathologist.
If the findings are unclear, the biopsy shall be repeated.
The pathologist should be consulted prior to re-biopsy.

Consensus

Background
Tumor detection by obtaining a histological sample is a prerequisite for initiating tumor-specific therapy. Since the biopsy leads to a local tissue reaction, which may distort the contrast agent behavior during imaging, in case of clinically obvious tumor findings, sampling is recommended only after contrast agent-assisted imaging has been performed. The tissue sample should be taken from the progression zone of the tumor, i.e., from its marginal area, and under no circumstances from the necrotic center. The usual form of biopsy collection is incisional biopsy with a scalpel. In case of a brush biopsy, care must be taken to ensure that it is performed sufficiently deep with removal of coherent tissue particles and provocation of bleeding to avoid false negative findings. Photo documentation of the tumor prior to sampling is desirable. If the histology results are unexpectedly negative, the biopsy should be repeated at least once. A reference pathology should be consulted if the histological picture is unclear. The histopathologic findings should include all parameters that have been shown to be useful for staging and prognosis of oral cavity carcinoma. These include tumor location, macroscopic tumor size, histologic tumor type according to WHO, histologic tumor grade, depth of invasion, lymphatic vessel invasion, blood vessel invasion, and perineural invasion, locally infiltrated structures, classification pT, details of affected districts and infiltrated structures, and R status \[203\], \[204\], \[205\], \[206\], \[207\], \[208\], \[209\], \[210\], \[220\], \[211\], \[212\], \[213\], \[214\], \[215\], \[216\], \[217\], \[218\], \[219\].

8.1 Staging
The staging of oral cavity carcinoma is performed according to the classification of the UICC TNM classification of malignant tumors, which describes the anatomical extent of the disease in relation to the primary tumor, the presence of regional lymph node metastases and distant metastasis with organ involvement (see Appendix Chapter 12.2). The possibility of occult metastasis also has a direct impact on treatment planning \[221\], \[222\].
8.2 Primary tumor

7.2 Consensus-based Recommendation

EC
To avoid a positive resection margin associated with a worse prognosis, the technique of intraoperative rapid section histology may be helpful.

Consensus

7.3 Consensus-based Recommendation

EC
Histologically, the distance from the resected margin to the primary tumor on the formalin-fixed specimen should be at least 3-5 mm. The orienting value for resection is 10 mm from the palpable tumor margin.

Consensus

7.4 Evidence-based Recommendation

GoR

A
In correspondence with the clinician, the histopathological report shall describe the exact location of any R+ situation that may be present. The tumour specimen shall be sent to the pathologist with clear designation of the anatomical topography. Suture or color marking may be done for this purpose. The histopathologic findings shall include: Tumor location, macroscopic tumor size, histologic tumor type according to WHO, histologic tumor grade, depth of invasion, lymphatic vessel invasion, blood vessel invasion and perineural invasion, locally infiltrated structures, classification pT, details of affected districts and infiltrated structures, R status.

LoE

2++

[203]; [223]; [224]; [225]; [226]; [227]; [228]; [229]; [230]; [231]; [232]; [233]; [234]; [235]; [236]; [237]; [238]; [220]

Consensus

There is clear evidence of the influence of tumor grading on prognosis, with higher grading being associated with poorer prognosis [204], [205], [206], [207]. The T category describes the maximum extent of the primary tumor and the presence or absence of invasion of the tumor into adjacent structures. Higher categories in the TNM classification correlate with poorer prognosis [205], [208], [209], [210]. Tumor thickness greater than 4 mm is associated with poorer prognosis [205],[208], [209], [210]. Perineural infiltration is a meaningful parameter for a higher risk of recurrence and a worse prognosis [235]. Certain histologically differentiable tumor types behave differently from conventional squamous cell carcinoma. Papillary and verrucous carcinomas generally have a better prognosis, whereas basaloid and spindle cell variants behave more aggressively [220]. Discontinuous infiltrative tumor growth, as opposed to continuous growth with a clearly definable growth front, results in a poorer prognosis, especially on the tongue and floor of the mouth [211], [212], [213]. The nature of the resection margins of the
primary tumor or the presence of dysplasia in the margins of the tumor influence local recurrence. A distance of less than one millimeter between the histologically detectable tumor margin and the resection margin is considered a positive resection margin (classification according to RCP, Royal College of Pathologists) [214], [215], [216], [217]. A resection with a histologically confirmed margin of safety of 1-3 mm is termed a close resection margin, and one with at least 5 mm is termed a safe resection margin [217], [218], [219], [221], [222], [239]. The histopathological findings should describe the exact location of any R+ situation that may be present, in communication with the clinician. The tumor specimen should be sent to the pathologist with clear designation of the anatomic topography to avoid ambiguity in reporting the findings. Thread or color marking can be done for this purpose. Although an improvement in prognosis through the use of frozen section histology for intraoperative assessment of tumor margins has not been demonstrated [218], [219], this method is helpful in avoiding uncontrolled or unnecessarily radical resections. It can thus be assumed that intraoperative frozen section histology makes a significant contribution to safeguarding an R0 resection and to preserving structure and function.

8.3. Cervical lymph node metastases

<table>
<thead>
<tr>
<th>7.5</th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoR</td>
<td>A</td>
<td>The histopathological findings of the neck dissection specimen shall include the side of the neck, the type of neck dissection, the cleared levels, the total number of lymph nodes with number of affected lymph nodes, the levels of the affected lymph nodes, the diameter of the largest affected lymph node, additional structures removed, and if present, a growth that crosses the capsule.</td>
</tr>
<tr>
<td>LoE</td>
<td>2++</td>
<td>[223]; [240]; [241]; [242]; [243]; [244]; [245]; [246]; [111]</td>
</tr>
</tbody>
</table>

Background

Local metastasis of the primary tumor to the cervical lymph nodes is a reliable parameter for prognosis, with the course of the disease being less favorable the more nodes are involved. Furthermore, involvement of the caudal levels (IV and V) and cross-capsular growth negatively influence the prognosis [204], [239], [247], [248], [249], [250], [251], [252], [253]. An exclusively immunohistological assessment of the tumor is currently of uncertain significance [254].

The methods and procedure for the detection of distant metastasis are described in chapter [Chapter 7.3](#). The classification of lymph node levels is shown in the [Chapter 12.3](#).

8.4. Other prognostic factors

A number of studies deal with the role of HPV (human papilloma virus) infection in head and neck cancer. Five studies showed that HPV infection in oropharyngeal tumors was associated with younger age of patients, absence of risk factors, high proliferation...
indices, higher grading, basaloid subtype, better response to radiotherapy and better prognosis [53], [255], [256], [257], [258].

Results of studies looking at the validity of proliferation indices and molecular markers are still considered inconstant for predicting individual disease progression. However, high expression of Ki-67 could be correlated with the risk of rapid tumor progression [218], [259], [260].

9. Therapy of oral cavity carcinoma

9.1. General treatment recommendations

<table>
<thead>
<tr>
<th>8.1</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>The treatment of oral cavity carcinoma shall be carried out in an interdisciplinary manner after coordination of each individual case within tumour boards involving the specialist disciplines of oral and maxillofacial surgery, otorhinolaryngology, radiotherapy, oncology, pathology and radiology.</td>
<td>Strong Consensus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.2</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>The patient shall be informed in detail and repeatedly about his disease, treatment options and secondary disorders.</td>
<td>Strong Consensus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.3</th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoR</td>
<td>Patients with oral cavity carcinoma should be examined by an experienced dentist to determine their dental status before treatment begins.</td>
<td>Strong Consensus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If the patient's general condition permits, surgery should be performed for curatively resectable oral cavity carcinomas, if necessary in combination with immediate reconstruction. In the case of advanced carcinomas, postoperative therapy should also be performed.

Evidence-based Recommendation

<table>
<thead>
<tr>
<th>GoR</th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>If the patient's general condition permits, surgery should be performed for curatively resectable oral cavity carcinomas, if necessary in combination with immediate reconstruction. In the case of advanced carcinomas, postoperative therapy should also be performed.</td>
<td>[263]; [264]; [265]; [266]</td>
</tr>
</tbody>
</table>

Background 8.1-8.4

- The options for curative treatment are
- surgical therapy alone
- radiotherapy alone
- radiotherapy in combination with chemotherapy, and
- combinations of surgical therapy, radiotherapy and chemotherapy.

The treatment of oral cavity carcinoma generally depends on the location and size of the primary tumor, the general condition of the patient, the anticipated treatment-related morbidity with its functional and aesthetic consequences, and the anticipated success of the treatment.

The aim of the treatment is to achieve permanent or as long as possible locoregional tumor control with as little functional or aesthetic impairment as possible. During the treatment of oral cavity carcinoma, the most important functions to be maintained or restored are articulation, phonation, and chewing and swallowing. Therapy, which is basically interdisciplinary, should be planned and carried out in accordance with the present guideline and after consultation within a tumor board established at the center. Members of the tumor board are, in addition to the oral and maxillofacial surgeon, a physician for ear, nose and throat medicine, radiotherapy, oncology, pathology, radiology and, if necessary, plastic surgery or neurosurgery. This composition corresponds to the specifications of the German Cancer Society for the "Head and Neck Module". The definition of oncological organ centres can be found at www.onkozert.de.

Prospective randomized controlled multicenter studies that allow a statement on the superiority of surgical therapy or radiotherapy could be found neither for early (stage I and II) nor for advanced oral cavity carcinoma (stage III and IV) [269], [270], [271], [272], [273], [274], [275], [276], [277], [278], [279], [280], [281], [282], [283], [284], [285], [286], [287], [288].

Before treatment, the patient should be informed in detail and several times about his disease, treatment options and secondary disorders [290], [291], [289]. Likewise, for prophylactic reasons, early dental care of the patient is essential in order to counteract the otherwise frequent occurrence of radiation caries, tooth loss and possible infected osteoradionecrosis in the case of planned or previous radiation therapy [267], [268]. Furthermore, professional nutritional counselling is important to determine the necessary calorie and nutrient intake and to implement the necessary measures (see chapter on [Chapter 10.4](#)).
9.2 Surgical treatment of the primary tumor

8.5 Evidence-based Recommendation checked 2021

GoR A

The therapy of oral cavity carcinoma shall take into account the individual situation of the patient. A decision on surgical therapy should be made taking into account the achievability of tumor-free resection margins and the postoperative quality of life.

LoE 3

[235]; [291]; [292]; [293]; [294]; [295]; [296]; [297]

Strong Consensus

8.6 Consensus-based Recommendation new 2021

EC

HPV-positive and/or p16-positive oral cavity carcinomas shall not be treated differently from alcohol- and nicotine-associated carcinomas.

Consensus

8.7 Evidence-based Recommendation checked 2021

GoR B

In case of a microscopically remaining tumor (missed R0 resection), a targeted resection should be performed to improve the patient’s prognosis.

LoE 3

[234]

Strong Consensus

8.8 Evidence-based Recommendation checked 2021

GoR B

The continuity of the mandible should be maintained during tumor resection if there is no evidence of tumor invasion into the bone on imaging or intraoperatively.

LoE 3

[298]; [299]; [300]; [301]; [302]; [303]

Strong Consensus

Background

No suitable studies could be found to identify the best therapy for oral cavity carcinoma. The only published prospective randomized study comparing survival rates after surgical therapy in combination with adjuvant radiotherapy with
radiochemotherapy alone was statistically inconclusive due to insufficient case numbers \[315\]. A large number of non-randomized, retrospective or monocentric studies describe survival rates or quality of life after both surgical therapy and radiotherapy. However, due to flaws in study design or conduct, no recommendation regarding the best modality of therapy can be derived from them \[269\], \[270\], \[271\], \[272\], \[273\], \[274\], \[275\], \[276\], \[277\], \[278\], \[279\], \[280\], \[281\], \[282\], \[283\], \[284\], \[285\], \[286\], \[287\], \[288\].

However, it has been shown overall that small and superficial carcinomas of the oral cavity (T1, T2) can be cured by both surgery and radiotherapy \[304\], \[306\], \[316\], \[317\], \[318\]. For tumors with bone invasion, no evidence was found for better local tumor control with surgical therapy compared to radiation. However, the risk of osteoradionecrosis with subsequent loss of the jaw is significantly increased after radiotherapy in these carcinomas \[319\], \[320\]. Furthermore, advanced carcinomas of the oral cavity (T3, T4) have been shown to have a higher recurrence rate after radiotherapy alone than other head and neck carcinomas \[266\]. Patients with advanced carcinomas of the oral cavity (T3, T4) should therefore be treated with combined surgery and radiotherapy \[265\].

- Due to the lack of evidence on the question of definitive local therapy, the following criteria must be considered when deciding on surgery:
 - likelihood of functional impairment
 - resectability of the tumour
 - general health of the patient and
 - wishes of the patient.

In operable patients with resectable oral cavity carcinomas, tumor resection should be performed in combination with reconstruction.

No controlled randomized comparative studies are available for the selection of the resection technique of the primary tumor or for the technique of reconstruction. Therefore, the decision on the approach to resection as well as reconstruction depends primarily on the experience of the surgeon as well as the patient’s wishes.

When assessing the resectability of a tumor, it must be taken into account that a failed R0 resection significantly worsens the prognosis \[305\], \[306\], \[307\], \[308\], \[309\], \[310\]. If a targeted resection with tumor-free margins is successful in these cases, this improves local tumor control \[234\]. Postoperative radiotherapy with an effective tumor dose of at least 60 Gy is also likely to improve local tumor control in patients with scarce or histologically affected resection margins \[321\].

If achieving tumor-free resection margins requires removal of the mandibular bone, continuity of the mandible should be preserved by box-shaped resection or resection of the internal brace in appropriate cases \[311\], \[312\], \[313\], \[314\]. Continuity-preserving resections are generally indicated when the macroscopic tumor distance to the mandible is more than 5 mm or when, in the case of clinically directly adjacent tumors, intraoperative frozen section examination of the periosteum shows no tumor involvement \[302\]. Even with periosteal involvement, mandibular continuity can be preserved in appropriate cases if there is no evidence of cortical erosion on imaging or intraoperative findings \[301\]. In these cases, box or internal brace resection results in a significantly improved quality of life compared to segmental resection \[303\]. A continuity resection is recommended if a clear bone infiltration was recognizable in the preoperative imaging (see chapter Chapter 7.1) \[302\]. If segmental resection cannot be avoided, an adequate reconstruction of the mandible with a bone graft can achieve a quality of life comparable to continuity-preserving techniques \[322\].
As described in detail in the background text on diagnostics, HPV status does not play a role as a prognostic factor in oral cavity carcinoma – in contrast to oropharyngeal carcinoma according to current studies. Therefore, HPV-positive oral cavity carcinomas should not be treated differently from alcohol- and nicotine-associated carcinomas.

9.3. Cervical lymph node excision

8.9 Evidence-based Statement

ST
In oral cavity carcinoma, occult metastasis to the cervical lymph nodes occurs in 20-40%. Levels I-III are almost always affected, and only very rarely level V.

LoE 3

[223]; [323]; [324]; [325]; [326]; [327]; [328]; [329]; [330]; [331]; [332]; [333]; [334]; [335]; [336]; [337]

Strong Consensus

8.10 Evidence-based Statement

ST
If a clinically unremarkable lymph node status is present (cN0), the results of selective neck dissection (levels I-III) do not differ from those of modified radical or radical neck dissection.

LoE 3

[325]; [336]; [338]; [339]; [340]; [341]; [342]; [343]; [344]; [345]; [346]

Strong Consensus

8.11 Evidence-based Recommendation

GoR A
Patients with clinically unremarkable lymph node status (cN0) shall undergo elective neck dissection regardless of T category.

LoE 3

[335]; [347]; [348]; [349]; [350]; [351]; [352]; [353]; [354]; [355]; [356]

Strong Consensus
9.3 Cervical lymph node excision

8.12 Evidence-based Statement new 2021

ST

For maxillary carcinoma, the evidence is insufficient to derive a general recommendation against neck dissection level I-III (SOHND) and for a „wait and see“.

LoE 3

Strong Consensus

8.13 Consensus-based Recommendation new 2021

EC

In the case of cT1cN0-carcinoma of the maxilla, neck dissection level I-III may be forgone if the localization is limited to the alveolar process and hard palate, the depth of invasion is less than 3 mm, permanent close follow-up is ensured, and the T category has been confirmed after histological workup.

Consensus

Background 8.9 - 8.13.

An integral part of the therapy of oral cavity carcinoma is the treatment of the cervical lymph nodes, which - depending on the preoperative diagnosis - can be classified as clinically inconspicuous, suspicious or highly suspicious of tumor involvement. However, when deciding on therapy, it must be taken into account that even with clinically and in imaging inconspicuous findings (cN0), occult metastases are still found histologically in 20-40% [204], [253], [319], [357], [358], [359], [360], [361], [362], [363], [364], [365], [366], [367], [372]. A depth invasion of the primary tumor of more than 4mm on MRI is frequently associated with the presence of ipsilateral cervical lymph node metastases [323]. Furthermore, it has been shown that in the histological workup of specimens of elective neck lymph node excisions in a high percentage even an extracapsular growth of the lymph nodes inconspicuous according to clinical criteria has been present [204], [253], [319], [357], [358], [359], [360], [361], [362], [363], [364], [365], [366], [367]. If prophylactic neck dissection is not performed, the prognosis is significantly reduced, even if a radical neck lymph node excision is subsequently performed if metastasis has occurred [366], [368], [176], [369], [370], [371].

According to the current classification according to Robbins, the following six lymph node levels are distinguished, which can be cleared out during neck dissection (see figure in the appendix) [373]:

| Table 4: Classification of the cervical lymph nodes according to Robbins |
|-----------------------------|-----------------------------|----------------------------------|
| Level | Designation | anatomical limitation |
| IA and IB | submental nodes and submandibular nodes | ventral and dorsal of the anterior digastric belly |
9.3 Cervical lymph node excision

<table>
<thead>
<tr>
<th>Level</th>
<th>Designation</th>
<th>anatomical limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>II A and II B</td>
<td>upper jugular lymph node group</td>
<td>ventral and dorsal to the jugular vein</td>
</tr>
<tr>
<td>III</td>
<td>middle jugular lymph node group</td>
<td>between level of hyoid bone and cricothyroid membrane</td>
</tr>
<tr>
<td>IV</td>
<td>lower jugular lymph node group</td>
<td>between level of membrana cricothyroidea and clavicle</td>
</tr>
<tr>
<td>V A and VB</td>
<td>posterior cervical triangle</td>
<td>between SCM and trapezius above and below the omohyoideus</td>
</tr>
<tr>
<td>VI</td>
<td>anterior pretracheal lymph node group</td>
<td>between level of hyoid and jugulum</td>
</tr>
</tbody>
</table>

Depending on the intention, one speaks of an elective (prophylactic) neck dissection if a cN0 finding is present and a curative neck dissection if the presence of one or more lymph node metastases is suspected on the basis of the clinical and radiological preliminary examinations. Regarding the extent of neck dissection, the following modifications are distinguished [203],[394]:

Radical neck dissection
Dissection of level I-V together with sacrifice of the accessorius nerve, jugular vein and sternocleidomastoid muscle.

Modified radical neck dissection
Removal of level I-V with preservation of one or more non-lymphatic structures

Selective Neck Dissection
Removal of fewer levels than I-V; in the case of oral cavity carcinoma, usually removal of levels I-III

Extended Neck Dissection
Evacuation or removal of additional lymph node groups or non-lymphatic structures.

The risk of occult metastasis with clinically unremarkable neck findings (cN0) necessitates a recommendation for indication of elective (prophylactic) neck lymph node evacuation. However, no prospective randomized studies are available that specify a risk threshold above which an elective neck dissection must be performed. Thus, conversely, no recommendation can be made to omit elective neck dissection for oral cavity carcinoma [395],[396]. However, a computer-assisted risk analysis using retrospective data showed that the probability of occult metastasis of more than 20% for oral cavity carcinoma clearly justifies an elective neck dissection [397]. Randomized
clinical studies comparing the results of elective neck dissection with those of follow-up alone in the case of clinically inconspicuous neck findings lead to the conclusion that in the case of metastasis occurring later, a worse prognosis can generally be expected despite subsequent therapeutic neck lymph node excision ("salvage neck dissection") [366], [368], [176], [369], [370], [387], [371]. Due to the up to six-fold increased incidence of later lymph node metastases in the "wait and see" concept, there was a significantly shorter disease-free survival time in the observation groups [391], [392]. Thus, even in cases of inital squamous cell carcinoma of the oral cavity and clinically unremarkable neck, elective neck dissection is recommended [366], [368], [176], [369], [370], [387], [371], [388], [389], [391], [392]. In another prospective randomized study with very strict, close follow-up of patients who did not undergo neck dissection, regular selective neck lymph node dissection (level I-III) was recommended - also taking into account the patient compliance required for this purpose [399].

The professional literature search to answer the question of whether neck dissection can be omitted for cT1 cN0 squamous cell carcinoma of the maxilla was only able to identify 4 corresponding studies, even after expansion to the cT2 category. All of these were case series (LoE 3) with a high risk of bias. In the „wait and see“ - group lymph node involvement was found in 2/15 [393] and in the group of patients treated with neck dissection occult metastases were detected in 2/8 [400] and 2/5 cases [376] for cT1 and in 4/19 [400] and 3/18 patients [376] for cT2. While Berger et al. [412] found metastases in 6% in the category pT1 and in 41% in pT2 in a total collective of 171 patients, Poeschl et al. [411], [374], [375] did not describe occult metastases or lymph node recurrences in any of the mentioned categories (T1: 8 patients, T2: 9 patients). Oral cavity carcinomas with an invasion depth of less than 3 mm have only a very low probability of metastasis, which is why a wait-and-see approach may be justified in these cases. However, the problem of exact preoperative determination of the depth of invasion precludes a general recommendation to forego neck dissection in superficially growing, invasive oral cavity carcinoma.

In some studies, the ventro-dorsal location of the tumor is described as significant for the risk of neck lymph node metastasis. Thus, these are found less frequently in precanine location [390] or anterior location [393].

The question of which levels of the neck should be removed in the case of clinically unremarkable lymph node findings during an elective neck dissection has been answered in studies. For oral cavity carcinoma, it was shown early on that metastasis essentially occurs to levels I-III, while level V is affected in only about 1% [377], [378], [401]. In tongue carcinomas, a more frequent metastasis was also observed in level IV, so that its clearance can be additionally considered in tongue carcinomas [402]. Depending on the localization of the primary tumor in the oral cavity, level IIB is rarely affected in the case of a clinically inconspicuous neck, and in fact in up to 5%, whereby it is here almost without exception tongue carcinomas [403], [404], [405]. Level IIB clearance must therefore be required for tongue carcinomas, whereas a waiver of level IIB clearance may be considered for oral floor carcinomas if there is otherwise no evidence of lymph node filiarization [406].

The likelihood of contra- or bilateral metastasis is increased in carcinomas of the floor of the mouth and in midline-near carcinomas in general [407], [408]. Numerous therapeutic studies have failed to demonstrate statistically significant differences between selective neck dissection (level I-III) and modified radical neck dissection [357], [366], [379], [380], [381], [382], [383], [384], [385] or radical neck dissection [386], [409] with regard to locoregional tumor control and overall survival in cN0 neck. If the histopathological workup of the specimen of a selective neck
dissection (level I-III) shows lymph node involvement, the extension of the excision to level IV and V as well as adjuvant radiotherapy is recommended in some cases [398], [410]. There is no evidence to support a general recommendation to forego adjuvant radiotherapy even in the case of non-capsular pN1 findings.

Background 8.14

Several systematic reviews, of which at least 50% of the included sources were designed as studies, have addressed the issue of SLN biopsy in oral cavity carcinoma. Studies over the past 20 years were summarized and detection rates consistently above 95% were found. In the most comprehensive and recent one by Liu et al. [416], which is also rated with only a low risk of bias, 66 studies involving 3566 patients were compiled and the sensitivity of SLN biopsy in terms of detecting lymph node metastasis is reported to be 0.87 [0.85-0.89] (when including all studies including validation studies with immediately following neck dissection). Considering only the studies in which patients with negative SLN were followed up and the false negatives were detected over the course, the sensitivity is 0.85 [0.82-0.88].

Although there has been no randomized comparison of the two approaches to date, all available data suggest that SLN biopsy is noninferior to elective neck dissection in terms of reliability in predicting lymph node status [374].

Since the accuracy of SLN biopsy is highly dependent on how carefully it is performed, this method requires special expertise. This is particularly true for the floor of the mouth, because here, due to the proximity of the tumor to the first lymph node stations, the „uptake“ of the SLN and the peritumoral injection area can overlap („shine-through“ effect), making the detection of the SLN more prone to error. Therefore, it is not always recommended for the floor of the mouth [420] or, if detection is uncertain, level Ia/Ib clearance should be performed. If a transcervical approach by resection or reconstruction is necessary, selective neck dissection should also be preferred.

However, in previous results, SLN biopsy is equivalent to conventional excision for small squamous cell carcinoma (T1/T2) in terms of survival [421], [422]. In terms of postoperative quality of life and functionality, there are advantages for SLN biopsy [423], as well as in terms of lower complication rates [422].
<table>
<thead>
<tr>
<th>8.16</th>
<th>Consensus-based Recommendation</th>
<th>new 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>In case of a positive sentinel lymph node and in case of an uncertain detection, a complete neck dissection shall be performed.</td>
<td>Strong Consensus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.17</th>
<th>Evidence-based Statement</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>The preservation of the accessorius nerve during neck dissection leads to an improvement in the quality of life.</td>
<td>LoE 3 [424]; [425]</td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.18</th>
<th>Evidence-based Statement</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>The results of a modified radical neck dissection may be equivalent to those of a radical neck dissection in selected cases where metastasis has already occurred.</td>
<td>LoE 3 [343]; [426]; [427]; [428]; [429]; [430]; [431]; [432]; [433]; [434]</td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.19</th>
<th>Evidence-based Statement</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>The results of a selective neck dissection (level I-III) in combination with postoperative radiochemotherapy may be equivalent to those of a modified radical neck dissection with postoperative radiotherapy in selected cases where lymph node metastasis has already occurred.</td>
<td>LoE 3 [435]; [436]; [437]</td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>
8.20 Evidence-based Statement new 2021

<table>
<thead>
<tr>
<th>ST</th>
<th>The evidence is insufficient at this time to derive a clear formulation for a recommendation for neck dissection level I-III (SOHND) rather than neck dissection level I-V for invasive oral cavity carcinoma with cN1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoE 3</td>
<td>; [376]; [362]; [438]; [439]; [440]; [441]; [442]</td>
</tr>
</tbody>
</table>

Strong Consensus

8.21 Consensus-based Recommendation new 2021

<table>
<thead>
<tr>
<th>EC</th>
<th>In the presence of a cN1 or N1 subgroup, selective neck dissection can only be performed up to level III as an alternative to MRND up to level V, provided there is no extranodal growth and the neck dissection extends at least one level more caudally than the level of LK metastasis.</th>
</tr>
</thead>
</table>

Strong Consensus

8.22 Evidence-based Statement new 2021

<table>
<thead>
<tr>
<th>ST</th>
<th>For invasive oral cavity carcinoma with LK metastasis in level IIb-III, neither MRND (level I-V) nor SOHND (I-III) has been sufficiently proven to be superior in terms of LK recurrence or survival rates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoE 3</td>
<td>; [376]; [362]; [438]; [439]; [440]; [441]; [442]</td>
</tr>
</tbody>
</table>

Strong Consensus

8.23 Evidence-based Recommendation checked 2021

<table>
<thead>
<tr>
<th>GoR A</th>
<th>If lymph node involvement is clinically suspected (cN+), appropriate neck lymph node excision, usually a modified radical neck dissection, shall be performed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoE 3</td>
<td>; [343]; [345]; [426]; [427]; [428]; [429]; [430]; [431]; [432]; [433]; [434]</td>
</tr>
</tbody>
</table>

Strong Consensus

Background

In the literature, uniform consensus exists that surgical treatment is usually required for clinically and radiologically abnormal neck findings. If the affected lymph nodes are fixed or unresectable, radiochemotherapy may be the only therapeutic option. In the histopathological workup of neck dissection specimens of stages N2 and N3, residual tumor cells were found in more than 30% despite previous radiochemotherapy,

© German Guideline Program in Oncology | Evidence-based Guideline oral cavity cancer - V3.0 | January 2021
although a complete remission was clinically evident post radiationem [459], [460], [461].

Since the risk of additional occult metastases in clinically inconspicuous levels is high in clinically conspicuous lymph node findings (cN+), local clearance of the affected lymph node region alone may not be sufficient. Therefore, at least a selective neck dissection of levels I-IV or a modified radical or radical neck dissection must be performed [359], [386]. In general, for oral cavity carcinoma involving levels I-III, the probability of level IV involvement is reported to be 7-17% and level V 0-6% [377], [365]. Nevertheless, the risk of “skip metastases” is pointed out, which can lead to involvement of level V, although there was no metastasis in levels II-IV [445]. In the case of clinically conspicuous neck findings (cN+), an infestation of level IIB is to be expected in 5% [406], which should therefore be cleared in any case [444]. With increasing T category, involvement of several ipsilateral lymph nodes and higher grading, the risk of contralateral metastasis increases [463], [465], especially in carcinomas near the midline and in carcinomas of the floor of the mouth [407], [465]. In these cases, therefore, elective excision of levels I-III on the contralateral side of the neck should be considered [466].

Numerous retrospective and prospective studies have been performed to decide on the extent of radicality of neck dissection in cases of positive lymph node status. In comparable tumor and lymph node stages, modified radical neck dissection yields equally reliable local tumor control as radical neck dissection [384], [446], [447], [448], [449], [450], [451], [452], [453], [454]. Preservation of non-lymphatic structures, especially the accessorius nerve, results in improved quality of life [424]. Level V evacuation is associated with an increased risk of damage to the accessorius nerve and a negative impact on quality of life [425]. It has also been shown that in selected patients without locally advanced lymph node involvement, selective neck dissection combined with postoperative radiochemotherapy provides tumor control as reliable as more radical neck lymph node excision alone. In selected patients without locally advanced lymph node involvement, selective neck-dissection in combination with postoperative radiochemotherapy provides reliable regional tumor control [455], [456], [457]. A study of selective neck dissection with clearance of levels I-III showed no differences in local tumor control between pN0 and pN+ findings over a period of 38 months when only singular and small lymph nodes were involved in the pN+ group [469]. However, there is currently insufficient evidence to generally recommend the concept of selective neck dissection for a cN+ finding. Retrospective data suggest that the risk of local lymph node recurrence increases with histologically confirmed size of the affected lymph node greater than 3 cm (N2) and with two or more affected lymph nodes [471]. Postoperative radio- or radiochemotherapy significantly reduces the risk of recurrence in the neck in these cases [108], [357], [362], [366], [473], [474].

With regard to the question of whether neck dissection level I-III (SOHND) is preferable to neck dissection level I-V (MRND) in patients with invasive oral cavity carcinoma with N1 subgroup or N1 in more than 50% of patients, five relevant publications were included [376], [441], [442], [449], [440]. The results of the studies showed slight advantages of MRND over SOHND with regard to the occurrence of LK metastases, occurrence of locoregional recurrence, 3-year survival and overall survival. In the paper by Feng et al, 2/11 patients in the N1 SND subgroups showed regional recurrence, both of whom died. In the CND group (“comprehensive ND”), the N1 subgroup showed regional or locoregional recurrence in 3/29, of whom 2 died. In Schiff et al, the N1 SND group with radiotherapy showed ipsilateral lymph node metastases in 0/23 patients and in N1 SND without radiotherapy in 2/24 patients. In the N1 RND group with
radiatio, ipsilateral lymph node metastases occurred in 0/2 patients and in N1 RND without radiatio in 0/1 patients. In Shin et al, N1 subgroup analysis was available for regional recurrence rate only. Here, 2/11 patients in the N1 SND subgroups showed regional recurrence, both of whom died. In the CND group, the N1 subgroup showed regional or locoregional recurrence in 3/29, of whom 2 died. In the paper by Liao et al, results in the N1 subgroup for 123 with SND and for 28 with CND could be extracted from the data collected. A 5-year overall survival rate of 51% and disease-related survival of 70% was reported for the N1 SND group. For the N1 CND group, 5-year overall survival rates were 68% and disease-related 81%. Disease-free survival at 5 years was 64% for the N1 SND group and 77% for the N1 CND group.

However, it is important to note that these are all retrospective case series with a high risk of bias (LoE 3). This contrasts with other studies according to which modified radical neck dissection should not be considered standard therapy [462] and level I to III dissection is usually considered sufficient [464], [467], especially when followed by adjuvant radio/radiochemotherapy. The decision on the extent of neck dissection depends not only on the lymph node metastasis N1 a/b but also on the location and category of the primary tumor and the histopathological feature such as lymphangirosis [468], perineural invasion or vascular invasion [470]. The included studies also suggest further differentiation between level IV and V. In any case, neck dissection should not only refer to the level of the manifest lymph node metastasis, but should also include a level further caudal to it. In the case of level IIB and III involvement, extension of neck dissection to level IV, but not to level V, is indicated [472].

If both categories N2 or N3 underwent radiation that did not result in complete remission of the neck lymph node findings, a follow-up neck dissection may improve both locoregional tumor control and overall survival compared with follow-up alone [475], [476]. In principle, it has also been shown that modified radical neck dissection following radiochemotherapy, in the sense of a neoadjuvant treatment concept, increases disease-free survival as well as overall survival in N2 and N3 stages but not in N1 stages, irrespective of the response rate to radiochemotherapy [458]. However, the likelihood of successful salvage neck dissection if lymph node recurrence has already occurred after radiochemotherapy is low [477]. If the primary tumor is small but the lymph nodes in the neck are advanced, it is possible to perform only an adequate neck dissection and then irradiate the primary tumor and the neck without having to accept a loss of local tumor control [478], [479].

The question of whether adjuvant radio(chemo)therapy is recommended in cases of small primary tumor (pT1, pT2) with a lymph node metastasis (pN1) and absence of other risk factors has not been considered in prospective studies to date. The results of a prospective multicenter study (DOESAK-pN1) are not yet available. A systematic review summarizing data from older retrospective studies concludes that adjuvant radiotherapy does not confer a survival benefit [491]. Only one case-control study was found, which described advantages for adjuvant radiotherapy with regard to locoregional control, but no difference in overall survival. [490]. Another retrospective study describes a survival advantage for adjuvant RT in the subgroup analysis of patients younger than 70 years, as well as in pT2, but not in pT1. [443]. In another retrospective analysis, the effect of adjuvant RT in pN1 is rather questioned [492].

A benefit of prophylactic lymph node dissections in lip carcinoma is currently not proven [480] and none of the lymph node treatment concepts have been randomized prospectively studied so far. A separate S2k guideline on lip carcinoma is in preparation (https://www.awmf.org/leitlinien/detail/anmeldung/1/ll/007-103.html).
However, some studies indicate that from tumor size T2 the risk of lymph node metastases increases significantly and the prognosis deteriorates significantly \cite{481, 482, 483, 484}, so that from T3 at the latest an elective neck dissection of level I-III should be recommended.

Likewise for high-risk tumors

- from a tumour thickness (Td) of 5 mm
- from differentiation grade G3
- in the presence of desmoplasia
- in case of perineural growth
- in case of lymphatic or blood vessel invasion
- bone infiltration
- immunosuppression

are defined \cite{485, 486, 487, 488, 489}.

In case of clinical suspicion of involvement of regional lymph nodes (cN+), therapeutic lymphadenectomy of the respective regions is indicated, provided that the primary tumor is treated surgically. In cases of manifest lymph node metastases, regional dissection of levels I-V is indicated, usually in the form of a function-preserving modified radical neck dissection (MRND).

In the case of recurrence in the lymphatic region, reoperation is reasonable if it is technically feasible without vital threat to the patient. If this is not the case or if only an R1 resection is successful, radiation treatment should be considered.

The results of a selective neck dissection (level I-III) in combination with postoperative radiochemotherapy may be equivalent to those of a modified radical neck dissection with postoperative radiotherapy in selected cases where lymph node metastasis has already occurred.

9.4. Reconstruction

<table>
<thead>
<tr>
<th>8.24</th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Reconstructive measures shall always be part of a surgical concept. The planning of the reconstruction shall take into account the overall oncological situation. The cost of the reconstruction shall be justified by the expected functional or aesthetic improvement.</td>
<td></td>
</tr>
<tr>
<td>LoE</td>
<td>\cite{493}; \cite{494}; \cite{495}</td>
<td></td>
</tr>
</tbody>
</table>

Strong Consensus
Reconstruction in the oral cavity with microsurgically anastomosed grafts is a proven method. In many cases, the technique of microvascular tissue transfer is already indicated during tumor resection in order to achieve reliable defect coverage.

Consensus-based Recommendation

The planned bony reconstruction of the maxilla and mandible can be carried out with CAD/CAM support. This is especially true for complex (multi-segment) defects.

Background

As a consequence of the removal of the primary tumor with a sufficient safety margin, defects often develop that require reconstructive measures. The aim of these measures is to preserve or, in the case of secondary reconstruction, to restore chewing, speaking and swallowing function as well as facial aesthetics. Reconstructive procedures include local flap plasty, free skin, mucosa, or bone grafting, muscle-targeted grafts, and microvascular tissue transfer. Particularly for defects of the maxilla and the orbital region, defect prosthodontics and epithetics continue to be suitable.

While the indication for immediate soft tissue reconstruction is often based on the need for safe defect coverage, the question of primary bone reconstruction is still controversial. In contrast to soft tissue, histological evidence of tumor-free resection margins cannot be provided intraoperatively for bone, so that if residual tumor is detected later, a bone graft that has already been inserted must be removed again. Although it has been shown that immediate osseous reconstruction can preserve patients’ quality of life after mandibular continuity resection [322], the bridging plate for mandibular replacement therefore remains a viable reconstructive option, in part because of its ease of use. The reconstructive techniques vary depending on the anatomical localization as well as the patient’s resilience and desire. For example, it has been shown that the muscle-targeted myocutaneous pectoralis major flap is particularly suitable for older patients with low weight-bearing capacity [495]. However, no randomized controlled multicenter study could be identified in which the results of different reconstruction techniques were prospectively compared. However, evidence exists from numerous retrospective case series that microvascular tissue transfer is a safe and reliable technique that has been particularly successful for intraoral reconstruction [504], [505], [506], [507], [508], [509], [510], [511]. In a retrospective case series of 400 consecutive microsurgically anastomosed grafts, complete graft loss was reported in less than 1%, partial necrosis rate in 3%, and perioperative mortality of 1.3% [494].
Extensive defects of the maxilla and/or mandible may occur as part of tumor resection for oral cavity carcinoma with bone involvement. Bony reconstruction is usually performed using alloplastic material or autologous bone. CAD/CAM techniques can be used for this purpose. In recent years, virtual planning has been established, especially for the microvascular fibula graft. In this process, resection and reconstruction of the maxilla and/or mandible are planned virtually in advance and osteotomy templates are fabricated.

Furthermore, a patient-specific implant can also be fabricated. These procedures often allow the practitioner to achieve a higher accuracy of reconstruction with better function and esthetic outcome. Whether this ultimately leads to a higher quality of life for patients has not yet been scientifically proven.

9.5. Radiotherapy

<table>
<thead>
<tr>
<th>8.27</th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoR
A</td>
<td>Interruption of radiotherapy leads to deterioration of tumor control and shall be avoided.</td>
<td></td>
</tr>
<tr>
<td>LoE
2+</td>
<td>[521]; [522]; [523]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.28</th>
<th>Consensus-based Statement</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>In the case of primary percutaneous irradiation alone, an alternative fractionation (hyperfractionation/acceleration) should be chosen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

Background

Conservative, curative intent treatment of oral cavity carcinoma consists of radiotherapy or a combination of radiotherapy and chemotherapy. Chemotherapy alone is used for oral cavity carcinoma with palliative intention.

Radiotherapy makes use of ionizing radiation to treat malignant tumors. Ionizing radiation can be directed at the tumor from the outside (percutaneous radiation therapy) or directly into the tumor after implantation of special catheters in an afterloading procedure (afterloading: remotely controlled introduction of a radioactive radiation source from the outside). The total dose of radiotherapy is usually administered in several single doses either conventionally fractionated (1.8-2.0 Gy daily, 5x/week), accelerated (>10 Gy/week) or hyperfractionated (1.1-1.2 Gy, 2x daily). The total dose of radiation treatment acting on the tumor is limited by the radiation tolerance of the surrounding healthy tissues, which must be included in the radiation field despite maximum tissue protection. Various classifications are in use for graduating the radiation-related side effects (radiation toxicities) on the healthy...
surrounding tissue [527], [528], [529], with grade 1 usually representing the mildest and grade 4 the most severe toxicity.

Radiation therapy can be used with curative intent (primary radical radiation therapy), to improve local tumor control after or before surgical therapy (adjuvant or neoadjuvant radiation therapy), and to relieve tumor-related symptoms (palliative radiation therapy).

The effect of radiation therapy on the tumor and surrounding healthy tissues depends on the total dose, the single dose, and the total duration of treatment.

In conventional fractionation, the total dose of approximately 70 Gy is divided into daily single doses of 1.8 - 2 Gy, five times per week. Modifications are hypo-fractionation, hyperfractionation and accelerated fractionation. In hypo-fractionation, much higher individual doses than the usual 1.8 - 2 Gy are administered in preferably palliative situations. In hyperfractionation, smaller but more numerous individual doses are administered; in this case, the total dose can be increased. While the total weekly dose of approximately 10 Gy is maintained with hyperfractionation, all forms of accelerated irradiation aim for a higher total weekly dose and thus a shortening of the total treatment time. Studies show that both modifications in the treatment of head and neck cancer can lead to improved locoregional tumor control compared with conventional fractionation, but temporarily to increased radiation toxicity [530], [531], [532], [533], [534], [535], [536], [537].

Recent meta-analyses based on randomized clinical trials and based on individual patient data on alternative fractionation to definitive radiotherapy performed alone (hyperfractionation/acceleration) [524], [538] show, in addition to improved locoregional control, a significant improvement in overall survival compared with conventional fractionation. Subgroup analysis shows that especially young patients (< 50 years) benefit significantly from alternative fractionation with regard to survival.

It has been clearly demonstrated that prolongation of treatment time, for example by interruption of radiation due to complications in the course of the disease, leads to a deterioration of local tumor control [525], [526].

In order to reduce the toxicity of radiotherapy, while at the same time not worsening local tumor control or overall survival, intensity-modulated radiotherapy (IMRT) has been introduced for patients with head and neck cancer. The goal of avoiding radiation-induced xerostomia by dose reduction to the parotid glands was achieved in initial case series [539]. IMRT may also be indicated in secondary radiation therapy, for example to treat a recurrent tumor [540].

There is no established evidence that direct application of radiation by an implantable radiation source (brachytherapy) leads to an improvement in local tumor control or overall survival compared with percutaneous irradiation or surgery for head and neck cancer. However, case series are available showing local tumor control at 5 years of 65-97% for tongue and oral floor carcinoma at initial tumor stages (T1, T2) [316], [541], [542], [543], [544], [545], [546], [547], [548] and in advanced carcinomas 49-70% describe [316], [543], [547], [549]. The optimal tumor dose is reported to be 65 Gy [544], which should not be exceeded to avoid necrosis or bone complications [549], [550], [551]. A combination of brachytherapy with percutaneous radiotherapy is possible [552], [553]. Compared to percutaneous radiotherapy alone, however, no reliable improvement in quality of life could be achieved with this combination [554].
9.6. Radiotherapy in combination with chemotherapy

<table>
<thead>
<tr>
<th>8.29</th>
<th>Evidence-based Statement</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>Neoadjuvant or adjuvant chemotherapy has no beneficial effect in oral squamous cell carcinoma in conjunction with surgery.</td>
<td></td>
</tr>
<tr>
<td>LoE</td>
<td>1++</td>
<td>[524]; [555]; [556]</td>
</tr>
<tr>
<td></td>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.30</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>In the case of simultaneous primary radiochemotherapy, chemotherapy should be given with cisplatin or a cisplatin-containing combination.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.31</th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoR</td>
<td>A</td>
<td>[555]; [557]</td>
</tr>
<tr>
<td></td>
<td>In patients with advanced, inoperable and non-metastatic oral cavity carcinoma, primary radiochemotherapy shall be preferred to radiotherapy alone, especially in the age groups up to 70 years.</td>
<td></td>
</tr>
<tr>
<td>LoE</td>
<td>1++</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.32</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Radiochemotherapy shall only take place at facilities where radiation- or chemotherapy-related acute toxicities can be identified and adequately treated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.33</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>As an alternative to radiochemotherapy, a combination of radiotherapy with cetuximab can be performed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

Background 8.29 to 8.33

While no curative effect has been found for chemotherapy alone in the treatment of squamous cell carcinoma of the head and neck region, a survival benefit has been
clearly demonstrated for the combination of radiotherapy with chemotherapy [558], [524]. This amounts to 17% in comparison with radiotherapy alone for oral cavity carcinoma [524]. It could be shown that the effect of chemotherapy accompanying radiotherapy is particularly given in patients under 60 years of age and amounts to 22-24% in this group as well as 12% in the 60-70 year olds [558], [524].

In principle, chemotherapy can be neoadjuvant, adjuvant or concomitant with other therapeutic modalities, usually radiotherapy. While in neoadjuvant therapy chemotherapy is given in the weeks before radiotherapy or surgery, in adjuvant therapy it is given after radiotherapy or surgery has been performed. Chemotherapy is often given concomitantly with radiotherapy, namely after surgical treatment has been performed (adjuvant radiochemotherapy). Chemotherapy alone leads to a statistically non-significant survival benefit of 2% at 5 years when applied neoadjuvantly and to no effect when applied adjuvantly [558], [524], [560], [561]. Thus, there is no evidence supporting a benefit of neoadjuvant or adjuvant chemotherapy in combination with surgery [558], [524], [559], [560], [561]. In contrast, neoadjuvant chemotherapy with cisplatin and 5-FU improves 5-year survival by a statistically significant 5% compared with locoregional therapy (surgery) alone in patients with nonmetastatic head and neck cancer [558], [524].

However, at the time of the guideline update, no new data could be elicited to recommend neoadjuvant radiotherapy or chemotherapy.

When chemotherapy is given concomitantly with radiotherapy, there is an 8% improvement in 5-year overall survival for both resectable and non-resectable tumors compared with radiotherapy alone, as well as improved local tumor control, also 8% [524]. Prognostic improvement with chemotherapy accompanying radiotherapy has been described predominantly with conventional radiotherapy, but also with modified radiotherapy [558], [524], [562].

Compared to other chemotherapeutic agents, cisplatin is of greatest importance in this regard, as it is as effective as its sole administration when compared to polychemotherapy containing cisplatin, but polychemotherapy without cisplatin leads to significantly worse outcomes [558], [524], [562].

However, the survival benefits achieved by combination with chemotherapy are accompanied by a significant increase in acute radiation toxicity. Thus, in addition to increased adverse effects on hematolgy, there is an increase in mucositis [268], [271], [563], [564],[565], [566], [567], [568], [570], [571], [572], [573], as well as increased long-term sequelae, especially dental damage [268], [574]. These increased side effects have been found more frequently in combination with conventional radiotherapy [268], [570], [575], [576], [577]. It is therefore recommended that radiochemotherapy should only be given at institutions where radiation- or chemotherapy-related acute toxicities can be identified and adequately treated.

For patients with unresectable, locally advanced squamous cell carcinoma of the head and neck region, initial results of a phase III trial showed a significant survival benefit with neoadjuvant cisplatin/5-FU and doxetacel pretreatment compared with cisplatin/5-FU combination therapy prior to radical radiotherapy [569], [578]. A similar study also showed a significant improvement in overall survival with the addition of doxetacel to cisplatin/5-FU induction chemotherapy compared with cisplatin and 5-FU induction alone followed by carboplatin radiochemotherapy [578].

A randomized multicenter trial evaluated the benefit of the EGF receptor-targeted monoclonal antibody cetuximab in combination with radical radiotherapy for advanced
head and neck cancer, but without inclusion of oral cavity carcinoma. This showed an improvement in local tumor control and overall survival of 11 and 10%, respectively, compared with radiotherapy alone, with no increase in radiation toxicity [579]. However, cetuximab administration resulted in third-degree acneiform skin lesions in 17% of patients and other infusion-related toxicities in 3%.

8.34 Consensus-based Recommendation new 2021

<table>
<thead>
<tr>
<th>EC</th>
<th>In the presence of a pN1 category of pT1 or pT2 squamous cell carcinoma, the indication for adjuvant radio(chemo)therapy can be offered.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strong Consensus</td>
</tr>
</tbody>
</table>

8.35 Evidence-based Recommendation checked 2021

<table>
<thead>
<tr>
<th>GoR</th>
<th>Postoperative radio- or radiochemotherapy shall be given in cases of advanced T category (T3/T4), scarce or positive resection margins, perineural invasion, vascular invasion, and/or lymph node involvement.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>LoE</td>
<td>[341]; [471]; [580]; [581]; [582]; [583]; [584]; [585]</td>
</tr>
<tr>
<td>1++</td>
<td>Consensus</td>
</tr>
</tbody>
</table>

8.36 Evidence-based Recommendation checked 2021

<table>
<thead>
<tr>
<th>GoR</th>
<th>Postoperative radiotherapy shall be conventionally fractionated and delivered at 54-60 Gy in 27-30 fractions over 5.5-6 weeks for average risk tumors and 66 Gy in 33 fractions over 6.5 weeks for tumors at increased risk of recurrence.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>LoE</td>
<td>[580]; [581]; [585]; [586]</td>
</tr>
<tr>
<td>1++</td>
<td>Consensus</td>
</tr>
</tbody>
</table>

8.37 Evidence-based Recommendation checked 2021

<table>
<thead>
<tr>
<th>GoR</th>
<th>Postoperative radiotherapy should be started as early as possible and completed within a maximum period of 11 weeks after surgery.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>LoE</td>
<td>[587]; [588]</td>
</tr>
<tr>
<td>2++</td>
<td>Strong Consensus</td>
</tr>
</tbody>
</table>
If radiotherapy is indicated, patients with increased histopathological risk criteria for tumor recurrence (resection margin <5mm and/or extracapsular tumor growth) should receive adjuvant treatment in the form of radiochemotherapy with cisplatin after tumor resection.

GoR B

LoE 2++

[580]; [581]; [585]; [589]; [590]; [591]

Strong Consensus

Patients with small and accessible tumors (T1 / T2) of the oral cavity can be treated by interstitial brachytherapy in selected cases.

GoR 0

LoE 3

[592]; [593]; [594]; [595]

Consensus

Background 8.34-8.39

Numerous studies have been conducted on the indication and effectiveness of radiotherapy or radiochemotherapy for the treatment of oral cavity carcinoma, but no randomized clinical trials could be found that compared radiotherapy or radiochemotherapy with the results of surgery alone. However, monocentric case series show that small and superficial carcinomas of the oral cavity can be cured by radiotherapy as well as surgery [304], [306], [316], [317], [318]. Similarly, in the treatment of clinically inconspicuous neck (cN0), the results of elective neck dissection are not significantly different from those of prophylactic radiotherapy in terms of local tumour control at 5 years [607]. The risk of osteoradionecrosis is increased when tumors arrode the jawbone [319], [320].

While there is no indication for radiochemotherapy in initial stages or smaller oral cavity carcinomas, advanced operable carcinomas of the oral cavity should be treated with a combination of surgery and radiochemotherapy [304], [596]. According to the results of two multicenter phase III trials on adjuvant therapy of advanced head and neck carcinomas, subgroup analysis of risk profiles recommends radiochemotherapy with cisplatin in the presence of resection margins less than 5 mm and extracapsular tumor growth, provided that an indication for radiotherapy has been made, taking into account the overall situation [608].

On the question of whether adjuvant radio/radiochemotherapy is indicated for pT1/pN1 squamous cell carcinoma of the oral cavity with complete tumor resection (R0) and without extracapsular spread, a systematic de novo search could not include any randomized controlled trials from 1994 onward. A prospective study on this issue launched by the DGMKG was still awaiting its final analysis at the time of the LL-update.

Non-randomized studies suggest that patients with positive resection margins and/or lymph node involvement benefit from adjuvant radiochemotherapy in terms of local control.
tumor freedom and overall survival at three years [609], and that this reduces the risk of lymph node recurrence, especially in patients with poorly differentiated tumors [382], [597], [599], [500], [601].

Postoperative adjuvant radiotherapy performs significantly better than neoadjuvant treatment with respect to local tumor control in patients with surgically removed T2-T4 carcinomas without lymph node involvement [620], [610].

Taking into account the histopathological tumor characteristics associated with an increased risk of recurrence, the indications for radio- or radiochemotherapy were more precisely defined. Extracapsular growth of lymph node metastases was shown to be the most important risk factor for local recurrence after neck dissection [239], [248], [611], [612], [613], [614], [615]. Also elevated local recurrence rates are found with close or positive resection margins, advanced tumor stage, any lymph node involvement greater than 3cm in diameter, multiple lymph node involvement, and vascular or nerve infiltration [216], [248], [604], [611], [614], [615], [616], [617]. Locoregional tumor control is particularly worsened in all cases with two or more of the above risk factors [305], [611], [612]. While a dose of 54-60 Gy in 27-30 fractions distributed over 5 days/week is considered sufficient in average risk cases, in the described cases of a strongly increased risk of tumor recurrence, adjuvant radiotherapy should be applied with a conventional fractionation and with not less than 57.6 Gy [585]. Thus, in the case of a close R0 or an R1 resection, local tumor control of up to 92% can be achieved with doses of at least 60 Gy [321]. Especially in cases of extracapsular lymph node growth, a dose increase to at least 63 Gy in fractions of 1.8 Gy or a boost to 66 Gy in 33 fractions is indicated [473], [474], [602]. Postoperative accelerated radiotherapy offers no advantage over conventional radiotherapy in terms of overall survival [603], [604]. The time from surgery to cessation of radiotherapy significantly affects locoregional control and overall survival and should be 11 weeks or less [604], [605].

In patients with histopathological criteria for increased recurrence, adjuvant radiochemotherapy should be given after resection of oral cavity carcinoma instead of adjuvant radiotherapy, because the combination with chemotherapy (cisplatin) leads to an improvement in local tumor control, disease-free survival, and overall survival [473], [474], [606], [618]. This effect is particularly pronounced after R1 resections and in affected lymph nodes with extracapsular growth [591].

There are no randomized controlled trials comparing the outcome of brachytherapy with percutaneous radiation in patients with head and neck cancer. Evidence for an indication for brachytherapy comes from large case series of experienced centers.

With interstitial brachytherapy, local tumor control rates at 5 years of 79-97% for T1 and 65-8% for T2 tumors have been achieved in patients with early stages of tongue or oral floor carcinoma [316], [541], [542], [543], [544], [545], [546], [547], [548]. The 5-year local tumor control was comparable to surgical resection alone at the same centers [592]. The 5-year local tumor control in patients with T3 - oral cavity carcinomas was 49-70% [316], [543], [547], [549].

While a dose of 65 Gy resulted in optimal local control [598], an increase in dose only increased the risk of complications such as necrosis and osteonecrosis [549], [550], [551]. A dose rate greater than 0.55 Gy/hour and a source distance greater than 15 mm significantly increased the risk for soft tissue and bone necrosis [546], [552], [553], [619].
9.7. Prevention and treatment of radiation-related side effects

<table>
<thead>
<tr>
<th></th>
<th>Evidence-based Statement</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.40</td>
<td>Evidence-based Statement</td>
<td>checked 2021</td>
</tr>
<tr>
<td>ST</td>
<td>There is evidence that intensity-modulated radiotherapy (IMRT) can reduce the frequency and severity of radiation-induced xerostomia.</td>
<td></td>
</tr>
<tr>
<td>LoE 3</td>
<td>[539]</td>
<td>Strong Consensus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.41</td>
<td>Consensus-based Recommendation</td>
<td>checked 2021</td>
</tr>
<tr>
<td>EC</td>
<td>Patients undergoing radiation treatment for carcinoma of the oral cavity shall receive optimal dental and oral care.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.42</td>
<td>Consensus-based Recommendation</td>
<td>checked 2021</td>
</tr>
<tr>
<td>EC</td>
<td>Patients shall receive a dental examination and, if necessary, conservative and/or surgical dental rehabilitation before undergoing radio/radiochemotherapy in the oral cavity to prevent osteoradionecrosis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.43</td>
<td>Consensus-based Recommendation</td>
<td>checked 2021</td>
</tr>
<tr>
<td>EC</td>
<td>At the beginning of radiation therapy in the oral cavity, a fluoridation splint and, if necessary, a spacer splint shall be made.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consensus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.44</td>
<td>Evidence-based Recommendation</td>
<td>checked 2021</td>
</tr>
<tr>
<td>GoR B</td>
<td>Patients who have been irradiated for carcinoma of the oral cavity should be offered pilocarpine orally three times daily if residual salivary gland function is preserved, provided there are no contraindications.</td>
<td></td>
</tr>
<tr>
<td>LoE 1+</td>
<td>[621]; [622]</td>
<td>Consensus</td>
</tr>
</tbody>
</table>

Background

© German Guideline Program in Oncology | Evidence-based Guideline oral cavity cancer - V3.0 | January 2021
The side effects of radiotherapy are caused by the unavoidable co-irradiation of healthy neighbouring tissues surrounding the tumour. A distinction is made between acute side effects that occur during or immediately after radiotherapy and late side effects that become apparent only after months or years.

The most important acute side effect of radiation and/or cytostatic treatment in the head and neck region is mucositis, an inflammatory, painful damage of the mucosal epithelium and the submucosa of the irradiated aerodigestive tract. Various classifications are in use for grading radiation-related side effects (radiation toxicities) on healthy surrounding tissues [527], [528], [529], with grade 1 usually representing the mildest and grade 4 the most severe toxicity. As the dose of radiation increases, the severity of mucositis also increases, so that food intake may be significantly limited when grade 3 or grade 4 is reached. If severe pain is present, it is often necessary to insert a PEG tube and - also because of the increased risk of local and systemic infections - to keep the patient in hospital. Similar to the mucous membrane, the outer skin of the head, face and neck can also be affected by acute radiation damage.

Late damage includes damage to the dental structure and periodontium. In the treatment of oral cavity carcinoma, early dental care is therefore essential for prophylactic reasons in order to counteract the otherwise frequent loss of teeth or radiation caries in the case of planned or previous radiation therapy; this also includes the preparation of a fluoridation and, if necessary, a spacer splint before the start of radiation therapy [267], [268]. Furthermore, pronounced and permanent dry mouth (xerostomia) often occurs when the salivary glands, especially the parotid gland, are located in the radiation field. This side effect can be mitigated by the technique of IMRT. As a consequence of xerostomia, speech, swallowing and taste disorders result, as well as further damage to the hard tooth substance due to the missing cleaning effect of the saliva. A feared long-term complication is infected osteoradionecrosis, which occurs in approximately 5% of irradiated patients and can lead to partial loss of the mandible. The risk of osteoradionecrosis is increased if tumor erosion has occurred on the mandible and it is therefore in the direct radiation field [319], [320], [624]. Surgical treatment of infected osteoradionecrosis of the mandible is technically demanding and can usually only be solved in the long term by microvascular bone transfer. Finally, fibrosis occurs as a late consequence of radiotherapy in the region of the masticatory and pharyngeal muscles, which can lead to a restriction of swallowing function and mouth opening (trismus).

Currently, there are no studies available that provide a detailed description of the quality of life after radio- or radiochemotherapy.

Prophylaxis and treatment of radiation-induced mucositis initially involves basic oral care, which should be performed by the patient but also by nursing staff according to established oral care protocols. Symptomatic treatment mainly includes sufficient pain therapy according to WHO guidelines, starting with topical analgesics and ending with opioid therapy. The use of benzidamine - mouth rinses reduces the number and severity of oral mucosal lesions and reduces the pain of mucositis [626], [627], [628]. In the largest of the present studies, a treatment regimen of 4-8 times daily applications of a 15 ml rinse solution was used. Irrigation occurred before the start of radiation treatment, extended continuously throughout the radiation period, and was not completed until 2-3 weeks after the end of therapy [625]. Most patients in this study had been treated with conventional fractionated radiotherapy, so the benefit of benzidamine in the case of radiochemotherapy or modified fractionated radiotherapy cannot be proven with certainty. However, no evidence is found for the benefit of other interventions or agents for the treatment of radiation-induced...
Acute and late-onset xerostomia caused by radio- or radiochemotherapy can be significantly reduced by administration of amifostine concurrent with radiation \[630\]. There is no evidence that this affects the response rate to radiotherapy, the recurrence rate at 18 months or overall survival at 24 months \[629\], \[648\]. Vomiting was observed significantly more often with amifostine administration than in a control group, but not hypotension or nausea \[648\]. The administration of amifostine for the prevention of radiation-induced xerostomia cannot be recommended outside of clinical trials.

In order to reduce xerostomia while not worsening local tumor control or overall survival, intensity-modulated radiotherapy (IMRT) has been introduced for patients with head and neck cancer. The goal of avoiding radiation-induced xerostomia by dose reduction to the parotid glands was achieved in initial case series \[539\].

Oral application of pilocarpine to the oral mucosa occupied by salivary glands during radiotherapy resulted in a significantly improved salivary flow rate after three months compared to a placebo group \[621\]. However, this effect did not affect the patients’ quality of life. With completed conventional fractionated radiotherapy and pre-existing xerostomia but residual function of individual salivary glands, oral administration of pilocarpine (5-10 mg three times daily) resulted in significant subjective improvement in dry mouth and reduced need for artificial saliva compared to a placebo group \[623\]. An optimal duration of pilocarpine application could not be determined.

No specific data could be found on the prophylaxis and treatment of radiation damage to the external skin of the head and neck region, as most studies included radiation to the chest region. No evidence was found to suggest that washing during radiotherapy increases acute radiation-induced skin toxicity \[643\]. Prophylactic application of aloe vera gel or aqueous or sucralfate-containing creams does not reduce the frequency or severity of acute skin toxicity \[643\], \[646\], \[647\]. In a small randomized clinical trial, CAVILON® No-sting Barrier Film (3M®) reduced the duration of moist skin desquamation compared with a 10% glycerin cream \[644\]. However, the evidence from this study is insufficient to recommend a specific intervention for the prevention or treatment of radiation-induced skin damage.

9.8. Treatment of locoregional recurrence

The most frequent reason for unsuccessful primary tumor treatment and subsequent tumor-related death is locoregional tumor recurrence; it occurs in approximately one fifth of patients with oral cavity carcinoma. The curative therapeutic options available in these cases are repeat surgery (salvage surgery) and/or radio- or radiochemotherapy.

The decision on the appropriate procedure for local tumor recurrence should be made on the basis of the patient's individual situation, taking into account the stage of the tumor recurrence and its potential resectability, the previous treatment, the probable effectiveness of the therapy in weighing its risks and its impact on the quality of life, the general physical condition and, last but not least, the patient’s wishes. The therapy decision should be made by the interdisciplinary team of the tumor board after histological recurrence confirmation and re-staging. Patients and their relatives should be informed in detail about the treatment risks and the prospects of success of renewed surgical or conservative therapy, also with regard to a permanent cure, especially taking into account the expected quality of life. In the decision-making process, the possibility of palliative therapy should also be considered.
Salvage surgery should be considered in all patients with a resectable locoregional recurrence after previous radiotherapy or surgery. The procedure should only be performed by an experienced surgical team with extensive reconstruction capabilities and in a facility with an appropriate intensive care facility.

Salvage lymph node dissection may be foregone if FDG-PET findings are negative and non-necrotic lymph nodes are present on anatomic imaging after primary RCTx. Salvage lymph node dissection may be foregone if FDG-PET findings are negative and non-necrotic lymph nodes are present on anatomic imaging after primary RCTx.

In already irradiated patients with a non-resectable locoregional recurrence, a second irradiation with curative intention should be considered. Irradiation should only be performed in an institution with adequate expertise and ideally within a clinical therapy study.

Background

In a meta-analysis of large retrospective case series, a 5-year survival rate of 39% was determined for the surgical treatment of tumor recurrence after previous irradiation of laryngeal, pharyngeal or oral cavity carcinomas, and of 43.4% specifically for oral cavity carcinoma [649]. The disease-free survival decreases with increasing stage of tumor recurrence [180, 657], whereby a correlation of the treatment success to the original tumor stage could not be found. Likewise, there was no correlation between disease-free survival after salvage therapy and the original, primarily applied treatment modality [649]. In salvage surgery for tumor recurrence, reported complication rates varied from 39-53%, of which 18.5-27% were classified as significant complications and had a lethal outcome in 3.2-5.2% [657, 658]. An increased number of complications was noted with increasing tumor stages [650]. There is insufficient evidence to suggest that complication rates of salvage surgery are higher in previously irradiated patients than in the non-irradiated collective [657, 658]. Depending on the tumor stage, but
9.9 Palliative and palliative medical treatment

not the localization of the recurrence, half of the patients regained their preoperative quality of life [649].

An important therapeutic option is radio- or radiochemotherapy, which can be performed with a high tumor dose if previously treated only surgically. An indication for this procedure is particularly given if the recurrence does not appear resectable or surgery would lead to an unacceptable impairment of quality of life. Even if the recurrence region has already been pre-irradiated, there may be a possibility of re-irradiation. No randomized trials were found that compared overall survival or quality of life after re-irradiation, salvage surgery, or palliative chemotherapy for advanced tumor recurrence in the head and neck region.

Loo et al. [668] studied a cohort of 34 patients with head and neck tumor and cN2 status who had received FDG PET/CT scanning before and 3 months after (sequential) radiochemotherapy (N=27 concurrent cisplatin chemotherapy, N=19 IMRT). Lymph node dissection was performed only in patients with increased FDG-PET avidity. The median follow-up time was 39.1 months. Only one patient had FDG-PET-positive lymph node findings, which turned out to be false positive. The negative predictive value was 100%.

A prospective randomized trial compared FDG-PET/CT-guided follow-up with planned lymph node dissection in radiochemotherapy-treated patients with nodally advanced (cN2/N3) head and neck tumor [669]. After a median follow-up of 36 months, the 2-year overall superiority of the total 564 included patients was 84.9% in the imaging-guided follow-up group (N=54 lymph node dissections) and 81.5% in the lymph node dissection group (N=221).

In patients with small, early recurrences (T1N0 and T2N0) or second cancers in a previously irradiated region, brachytherapy alone with 60 Gy results in local tumor control of 69-80% and overall survival of 30% at 5 years [659],[660]. Repeat radio- or radiochemotherapy is often offered when there is a non-resectable recurrence and thus no other option for curative intended treatment. Numerous smaller studies with a selected patient population have described 5-year survival rates between 9 and 20% and local tumor control rates of 11-48% [661],[662],[663],[664]. Here, tumor control was significantly better if the second irradiation could be performed with more than 50 Gy [661],[662],[664]. Local side effects on healthy tissue are associated with serious acute radiation damage in 9-18% [663],[665],[667]. In large case series, fibrosis of the neck muscles was described in 41%, oral mucosal necrosis in also 41%, trismus in 30% and lethal complications in 11% after secondary radiation [653]. Serious acute radiation toxicity is more likely in patients over 80 years of age, especially in second radiation treatments to the neck [666]. There is evidence that IMRT may help to improve the therapeutic index of second radiation [540].

9.9. Palliative and palliative medical treatment

<table>
<thead>
<tr>
<th>8.48</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Patients with incurable tumor disease but a good general and performance status shall receive palliative platinum-based chemotherapy in combination with cetuximab. Monotherapy should be considered for patients with reduced general condition. Excessive toxicity from combination chemotherapy should be avoided.</td>
<td>Consensus</td>
</tr>
</tbody>
</table>
8.49 Evidence-based Recommendation checked 2021

GoR 0
Palliative radiotherapy can be considered in patients with incurable oral cavity carcinoma.

LoE 3
[670]

Strong Consensus

8.50 Evidence-based Recommendation checked 2021

GoR 0
In patients with incurable oral cavity carcinoma, palliative surgical and/or radiological interventional measures can be considered to ameliorate tumor-associated complications.

LoE 3
[671]; [672]; [673]; [674]; [675]; [676]

Strong Consensus

Background 8.48 - 8.50

Oral cavity carcinoma must be considered incurable when

- the locoregional tumor growth has progressed so far that resection is no longer possible for anatomical and/or functional reasons and no curative effect can be expected from radiotherapy either,
- the patient's general condition is so severely reduced that surgical therapy is impossible and the performance of radiotherapy is also ruled out,
- the patient has suffered a locoregional recurrence after radical surgical or conservative therapy has already been performed and salvage therapy (rescue surgery, second radiation treatment) is no longer possible for surgical or radiobiological reasons,
- distant metastases are present.

Patients with a tumour that can no longer be cured have a wide range of physical and psychological concomitant problems that represent an additional challenge for treatment. For this reason, these patients should be given professionally conducted supportive therapy at an early stage.
<table>
<thead>
<tr>
<th>8.51</th>
<th>Evidence-based Recommendation new 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoR</td>
<td>A</td>
</tr>
<tr>
<td>LoE</td>
<td>1+</td>
</tr>
<tr>
<td></td>
<td>The antibody pembrolizumab, which targets the PD-1 receptor, shall be used in patients with PD-L1-expressing tumor and immune cells (CPS ≥1) as first line monotherapy or in combination with platinum and 5-fluorouracil.</td>
</tr>
<tr>
<td></td>
<td>Consensus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.52</th>
<th>Evidence-based Recommendation new 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoR</td>
<td></td>
</tr>
<tr>
<td>LoE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In patients pathologically lacking PD-L1 expressing tumor or immune cells (CPS<1), the EGRF receptor targeting antibody cetuximab should be used as first line therapy in combination with platinum (preferably cisplatin) and 5-fluorouracil (EXTREME regimen) in the palliative setting in patients in good general condition who no longer qualify for local therapy.</td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.53</th>
<th>Consensus-based Recommendation new 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>After 4-6 cycles of this combination, PD-L1 positive patients shall receive maintenance therapy until progression with pembrolizumab or PD-L1 negative patients with cetuximab.</td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.54</th>
<th>Consensus-based Recommendation new 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>After failure of platinum-containing first-line therapy with cetuximab, second-line therapy shall be given with a checkpoint inhibitor according to the approval status.</td>
</tr>
<tr>
<td></td>
<td>Strong Consensus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.55</th>
<th>Consensus-based Recommendation new 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>After failure of a platinum-containing first-line therapy with pembrolizumab, a second-line therapy with a taxane, possibly in combination with cetuximab, can be carried out.</td>
</tr>
<tr>
<td></td>
<td>Consensus</td>
</tr>
</tbody>
</table>
8.56 Consensus-based Recommendation new 2021
EC
After failure of first-line therapy with pembrolizumab as monotherapy, second-line therapy with platinum/5-FU and cetuximab can be given.
Strong Consensus

8.57 Consensus-based Recommendation new 2021
EC
A combination of several immunotherapies cannot be recommended in clinical practice and should be further tested in clinical trials.
Strong Consensus

8.58 Consensus-based Recommendation new 2021
EC
Cross-sectional imaging (e.g. CT) should be performed every 6 to 12 weeks during ongoing palliative systemic therapy, depending on the line of therapy and the dynamics of the disease.
Strong Consensus

Background

Although palliative chemotherapy is an important treatment option, there are no randomized prospective multicenter trials demonstrating evidence of improved quality of life with this intervention compared with supportive therapy alone. Furthermore, no evidence-based trial exists to demonstrate the benefit of a specific palliative chemotherapy regimen.

In patients with advanced, recurrent, or metastatic head and neck cancer, palliative intent chemotherapy can achieve response rates of 10-35% [689], [691], [692], [693], [695]. Patients with incurable tumor disease but good general and performance status should be assigned to palliative platinum-based chemotherapy in combination with cetuximab. Monotherapy should be considered for patients with reduced general condition. Excessive toxicity from combination chemotherapy should generally be avoided [682]. In a study with high-dose cytarabine in combination with cisplatin/5-FU, a response rate of 57% was reported [696]. It has been clearly demonstrated that especially patients with a better general and performance status benefit from palliative chemotherapy [694].

Chemotherapy with cisplatin alone has been shown to result in longer survival compared to treatment with methotrexate, but has higher toxicity [690]. Although the response rate of palliative chemotherapy can be improved by a combination of different cytostatic drugs there is no evidence for prolonged survival [689], [691], [692], [693], [680]. The improvement in response rate with combination chemotherapy is accompanied by increased hematologic and also general toxicity [691], [692], [693]. While the combination of cisplatin and paclitaxel at three-hour paclitaxel infusion does not differ from the combination of cisplatin and 5-FU in toxicity, response rate, or achieved survival [697], 24-hour paclitaxel infusion is associated with excessively increased hematologic toxicity [698].
The combination of the EGFR monoclonal antibody cetuximab with platinum derivatives and 5-fluorouracil has been considered standard therapy in this setting for the past 10 years based on data from the randomized phase III EXTREME trial [701]. This triple combination was the first ever to show a significantly increased response rate, progression-free and overall survival (10.1 vs 7.4 months with a HR of 0.8) compared to platinum in combination with 5-FU and was thus positive in all efficacy parameters. In the overall survival subgroup analysis of this study, the 88 patients with oral cavity carcinoma showed the greatest benefit compared to the other tumor sites oropharynx/hypopharynx and larynx with a HR of 0.42, making the EXTREME protocol particularly recommended for oral cavity carcinomas [701]. The overall survival benefit was also confirmed in the long-term follow-up of this study with a follow-up time of more than 5 years [703]. In addition, quality of life improved during the course of therapy with at most an insignificant increase in toxicity and a reduction in tumor-related symptoms [701], [700]. Maintenance therapy with cetuximab was well tolerated in this phase III study [702]. To date, a predictive biomarker for selecting patients for this therapy has not been identified [702], [699].

Other EGFR antibodies such as panitumumab and zalutumumab or the VEGF antibody bevacizumab failed to match or exceed the data of the EXTREME trial or were too toxic, making cetuximab the only approved EGFR antibody in combination with platinum-containing chemotherapy in first-line palliative therapy of recurrent or metastatic squamous cell carcinoma of the head and neck (r/mSCCHN).

Tyrosine kinase inhibitors such as gefitinib, erlotinib, and afatinib have also failed to demonstrate significant benefit in the palliative systemic treatment of r/mSCCHN, either as monotherapy or in combination with chemotherapy.

Therefore, there has long been no standard of care after progression on or after first-line platinum-containing therapy, particularly after progression on the EXTREME protocol. In this palliative second-line setting, taxanes, methotrexate, or cetuximab have been used in the past based on phase II/III data. If there was a gap of more than 6 months from the previous platinum-containing first-line combination, renewed platinum therapy (possibly also as a combination) was also considered.

It is in this setting that data on the effect of immunotherapies are now available. Here, almost all data in palliative systemic therapy were generated from studies in which oral cavity carcinoma was only a part of the included patients. Check-Mate-141 is a randomized phase III trial of nivolumab, a monoclonal antibody against PD1, in patients with r/mSCCHN and progression under/after platinum-containing chemotherapy within 6 months. In a 2:1 ratio, a total of 361 patients, 48% of whom had oral cavity carcinoma, were randomized to the control arm consisting of either docetaxel, methotrexate, or cetuximab at the discretion of the study site. Regarding the primary endpoint overall survival, immunotherapy (nivolumab) was shown to be superior to the control arm with a median survival of 7.5 vs 5.1 months (HR 0.70 p=0.01, HR 0.73 for oral cavity carcinoma) with a doubling of overall survival at 1 year (36.0 vs 16.6%) [678]. This was also confirmed at 2 years follow-up with 16.9 vs 6.0 %. [679]. The remission rate with nivolumab was higher (13.3 vs 5.8%), but progression-free survival did not improve (median 2.0 vs 2.3 months, HR 0.89 p=0.32). In the 78 patients with progression at or within 6 months of a curative platinum-containing therapy approach, this benefit of nivolumab over the control arm was shown to be [681]. Since this thus palliative first-line setting was not compared against a platinum-containing combination and certainly not against the EXTREME regimen, the value of nivolumab in this setting remains unclear. The 2-year follow-up data showed that both HPV+ and HPV- benefited from immunotherapy with nivolumab, as did PD-L1+ (tumor proportion score TPS >1%) and negative with trend towards PD-L1+. [679]. This benefit in overall survival is greatest
(HR 0.32) for TPS > 50% (approximately 20% of patients). In addition, the significantly lower rate of serious adverse events (13.1 vs 35.1%), the only marginally increased rate of immune-mediated adverse events, and the improved quality of life and symptom control during ongoing therapy and thereafter argue for the use of nivolumab as second-line therapy under or after failure of platinum-containing chemotherapy [678].

A large phase III trial of 882 patients [677] evaluated the administration of pembrolizumab alone or in combination with chemotherapy against cetuximab with chemotherapy for recurrent or metastatic head and neck squamous cell carcinoma. Here, the subgroup of patients with oral cavity carcinoma was approximately 30%. Pembrolizumab alone showed improved overall survival of 14.9 versus 10.7 months compared with cetuximab in combination with chemotherapy in a population with a CPS score of 20. With a CPS of 1, the survival benefit was 2 months. In combination with chemotherapy, pembrolizumab improved survival by 2.3 months (13.0 versus 10.7 months) over cetuximab with chemotherapy in the overall population, with a benefit of 3.7 months in patients with a CPS score of 20 and 3.2 months in those with a CPS score of 1. Neither pembrolizumab alone nor in combination with chemotherapy improved progression-free survival. Grade 3 or worse adverse events occurred in 55% of patients treated with pembrolizumab alone (164 of 300) and were 85% when combined with chemotherapy (235 of 276 patients). This was consistent with the frequency of adverse events in the group of patients treated with cetuximab in combination with chemotherapy (83%). Lethal adverse events with pembrolizumab occurred in 8% (alone) or 12% (in combination with chemotherapy) and in 10% when cetuximab was given in combination with chemotherapy (see the evidence profile in the guideline report for further details).

Regular cross-sectional imaging should be performed every 12 weeks in patients with r/mSCCHN on ongoing therapy, and every 6 weeks if there are signs of clinical progression, in order to make a timely change in therapy to an effective 2nd line therapy.

As with chemotherapy, there are no evidence-based studies for palliative radiotherapy that can demonstrate the effectiveness of this treatment modality for incurable head and neck cancer. Clinical trials have failed to identify recommendations for optimal dosing or timing of palliative radiotherapy.

In a clinical trial of 505 patients with incurable head and neck carcinoma, short-term palliative radiotherapy of 20 Gy in 5 fractions over 5 days resulted in sustained symptom improvement in 55% of patients [670].

Palliative intent surgical intervention may be warranted if a reduction in tumor mass can be expected to improve symptoms, especially pain reduction, bleeding reduction, or respiratory improvement. However, even for palliative surgical interventions, no studies were identified that showed their evidence in terms of prolongation of life or improvement in quality of life.

Small retrospective studies and clinical experience suggest that palliative surgical and interventional radiological measures such as tracheostomy placement, tumor reduction by laser, embolization, percutaneous endoscopic gastrostomy (PEG placement) and nerve blocks have a firm role in the management of specific tumor-associated problems. Their indication may be for upper airway obstruction, for debridement of necrotically disintegrated, bacterially colonized tumor masses, for bleeding, dysphagia, and pain [683],[684],[685],[686],[687],[688].
10. Aftercare and rehabilitation

10.1. Aftercare

<table>
<thead>
<tr>
<th>9.1</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>The maximum follow-up intervals should be 3 months for the 1st and 2nd year and 6 months for the 3rd to 5th year, even if the patient is symptom-free. A structured individual follow-up plan should be established for each patient. The patient’s quality of life should be surveyed at regular intervals. After the 5th year, the usual screening measures should be applied.</td>
<td></td>
</tr>
</tbody>
</table>

Background

An essential part of the entire therapy is a regular tumor follow-up, which should be carried out, if necessary, interdisciplinary with the attending radiation oncologist and ear, nose and throat specialist as well as in communication with the attending specialist colleague in private practice. The importance of tumor follow-up is evident from the fact that about one fifth of patients with oral cavity carcinoma develop a local tumor recurrence, which occurs in 76% within the first two years; even in the third year after completion of primary treatment, 11% of recurrences still develop [704]. The main goal of tumor follow-up is thus the careful examination of the oral cavity and neck to exclude regrowing tumors, which, according to the results of a retrospective study, lead to symptoms in only 61%, i.e. are not noticed by 39% of patients [704]. Another benefit of tumor follow-up is the detection of metachronous second tumors in the upper aerodigestive tract and lung, which are associated with a similar risk profile as oral cavity carcinoma and occur in 4-33% of patients with carcinomas of the oral cavity and pharynx [194], [195], [196].

Furthermore, the assessment of the functional follow-up (chewing, speaking and swallowing function), the pain status and the necessity of rehabilitative (speech therapy, swallowing training) or supportive measures (pain therapy, nutrition therapy, physiotherapy, lymphatic drainage) is the task of tumor follow-up. Particularly in patients with incurable tumor disease, but also in cases of functional or aesthetic impairments, it should be examined whether there is a need for psychosocial care. If primary reconstructive measures were not performed during tumor resection and there are disabilities of speech, swallowing and masticatory function, the possibility of secondary reconstruction can be discussed during the follow-up consultation, provided there is no evidence of active tumor activity. The same applies to the question of masticatory rehabilitation by means of prosthetic or implantological measures.

During the tumor follow-up, the health-related quality of life should be regularly observed and should be regularly observed and questioned in a standardized manner. Under certain circumstances, the need for psycho-oncology can be recognized in time and therapy can be initiated in this regard. [716].

The general quality of life of the patients and their psychosocial condition should also be observed and questioned during the entire follow-up. It can be considered certain that a severe depressive mood occurs 2-3 months after diagnosis and, provided there is no recurrence, the quality of life subsequently improves slowly and continuously [705], [706]. Due to these psychological burdens and also the fact that
functions such as eating, drinking, speaking, salivation, taste, smell as well as sexual life no longer have the quality as before the disease, the patients often need social and psychological support [707].

The maximum follow-up intervals are 3 months for the 1st and 2nd year and 6 months for the 3rd to 5th year, even if the patient is free of symptoms. After the 5th year, the usual screening measures should be applied. In the case of special risk constellations or acute complaints, more frequent examinations may be necessary in cooperation with the specialist colleagues in charge. Further information on the procedure for known precursor lesions of the oral mucosa can be found in the corresponding guideline (AWMF 007-092).

The examinations required at each follow-up appointment are the careful and systematic inspection and palpation of the entire oral cavity, oropharynx and neck. Easily obtained and useful clues to the possible presence of tumor recurrence can also be elicited by asking about pain and weight loss [708], [709]. An inexpensive and directly feasible measure for checking the cervical lymph nodes is ultrasound examination. To check the local findings and detect possible secondary tumors, a CT or MRI should be performed at 6-month intervals for the first two years and then every 12 months until the fifth year. If there is a suspicion of locoregional recurrence, distant metastasis, or a second tumor that requires further clarification based on these examinations, PET may be considered [193], [710]. To avoid imaging bias, sampling from the suspicious region should be done only after imaging. There is no evidence that regular chest radiographs or determination of tumor markers in serum have any benefit in tumor follow-up [463], [711], [712], [713], [714]. Prophylactic administration of β-carotene has also not been shown to be justified [715].

The HPV status of the tumor and the patient should not affect tumor follow-up intervals [717]. If the risk of recurrence is high, intensification of tumor follow-up to a 6- to 8-week interval is recommended for the first two years. For the following three years, check-ups can be performed at 3-month intervals [718]. Furthermore, if the risk of recurrence is high, follow-up can be extended beyond the usual 5-year interval or the subsequent screening measures. Factors for a particularly high risk of recurrence include:

- first two years after tumor or lymph node recurrence [718], [719]
- patient age less than 45 years at initial diagnosis
- continued exposure to risk factors such as tobacco or alcohol [720]
- tumor thickness ≥5 mm [721], [722]
- perineural invasion [722], [723], [724], [725], [726]
- high T stage (T3 + T4) [724], [727], [728], [729]
- high pN stage (from N2) [724], [726], [728]
- extracapsular spread [730]
- degree of keratinization of the primary tumor [730]
- high LNR (Lymph node ratio: ratio of positive to negative lymph nodes) [726], [727], [731], [732]
10.2. Kaufklinische Rehabilitation

<table>
<thead>
<tr>
<th>GoR</th>
<th>Evidence-based Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Patients who have undergone surgery and/or radiation treatment for oral cavity carcinoma should have their chewing ability restored by masticatory rehabilitation with implants or conventional prosthetic treatment. Furthermore, regular dental monitoring should be performed in these patients. Dental-surgical measures should be performed in these patients by specialists experienced in this clinical picture.</td>
</tr>
<tr>
<td>LoE</td>
<td>[261]; [262]; [733]; [734]; [735]; [736]</td>
</tr>
<tr>
<td></td>
<td>Consensus</td>
</tr>
</tbody>
</table>

Background 9.2

It is well documented that about 90% of patients with carcinoma in the oral cavity also suffer from caries, periodontal disease or infection of the oral mucosa [739], but are often unaware of the need for dental treatment [740]. Furthermore, it is known that, especially after radiotherapy, there is sometimes considerable damage to the tooth structure and periodontium, and complications after tooth extractions (wound healing disorders, infected osteoradionecrosis of the jaws) can be a considerable problem [267], [268]. It is therefore imperative to give these patients professional dental control and to have any interventions on the irradiated jaw performed exclusively by appropriately trained specialists with surgical expertise [261]. Even under the optimal conditions of continuous dental care, the manageability of patients can be problematic, with 51% of them dropping out of follow-up over time [261].

Since patients are masticatorily disabled after tumor-related tooth and/or jaw section removal and have a significantly lower quality of life than prosthetically restored patients [733], the organization of dental rehabilitation is an important task of tumor aftercare. In this context, prosthetic restoration can be problematic due to the postoperatively altered anatomy and not infrequently requires special commitment on the part of the practitioner. Although the placement of dental implants in the remaining jawbone or in microvascular anastomosed bone grafts has led to a considerable expansion of prosthetic possibilities, an increased implant loss rate in irradiated bone - especially in smokers - must be expected [737], [738]. There is insufficient evidence for a most appropriate prosthetic approach in patients who have undergone surgery and/or radiation for oral cavity carcinoma [736].

On the issue of implant restoration after irradiation of the head and neck region, reference is made to the S3 guideline "Implant restoration for oral rehabilitation associated with head and neck irradiation" (AWMF 007-089).

Background 9.3

The most serious complication for patients who have received radio- or radiochemotherapy for carcinoma of the oral cavity or oropharynx is infected osteoradionecrosis of the jawbone. Its average incidence is reported to be 5% [741]. The risk of osteoradionecrosis increases even further when radiation has been given for tumor invasion of the jawbone [319], [320]. The molar region of the mandible is most commonly affected, and often infected osteoradionecrosis is preceded by tooth...
Radiotherapy of tumour recurrence with total doses above 60 Gy, often in conjunction with chemotherapy, is responsible for infected osteoradionecrosis in 20% of cases [743], [748], [750], [751]. Treatment of this complication ranges from systemic antibiotic therapy to ablation of the infected bone and sequestrotomy to continuity resection of the affected portion of the jaw, with subsequent reconstruction being technically challenging due to previous surgery and radiation [742], [749], [752]. There is insufficient evidence to support the benefit of hyperbaric oxygen therapy for the prevention or treatment of osteoradionecrosis. A multicenter case-control study showed no benefit of hyperbaric oxygen therapy in patients with osteoradionecrosis when performed without further surgical intervention [744]. A systematic review found only weak evidence for an effect of hyperbaric oxygen therapy in preventing osteoradionecrosis after tooth extractions [746]. Evidence exists for the benefit of hyperbaric oxygen therapy when used additionally as part of a surgical or reconstructive procedure [743], [745]. Despite clinical observations that hyperbaric oxygen therapy can reduce the loss rate of dental implants [735], a systematic review found no evidence for or against the benefit of such an intervention [747].

9.3 Evidence-based Statement

Infected osteoradionecrosis of the jaws is a serious complication of treatment. There is no evidence of an effect of hyperbaric oxygen therapy alone for the prophylaxis or treatment of this complication. Hyperbaric oxygen therapy may be useful in conjunction with surgical procedures for the prophylaxis or treatment of osteoradionecrosis.

<table>
<thead>
<tr>
<th>LoE</th>
<th>Evidence</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[324]; [753]; [741]; [742]; [744]; [746]; [747]</td>
<td></td>
</tr>
</tbody>
</table>

Consensus

10.3. Speech and swallowing rehabilitation

Patients with chewing, speaking and swallowing disorders should receive adequate functional therapy. The patients should already be presented to appropriately qualified therapists before the start of treatment if chewing, swallowing and/or speech disorders are to be expected as a consequence of the planned surgical or conservative measures.

<table>
<thead>
<tr>
<th>LoE</th>
<th>Evidence</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+</td>
<td>[754]; [755]; [756]; [757]; [758]; [759]</td>
<td></td>
</tr>
</tbody>
</table>

Strong Consensus
Patients with dysphagia should be submitted to adequate diagnostics, e.g. high-frequency fluoroscopy with contrast medium or fiberoptic endoscopy.

LoE 2+ [757]; [758]
Strong Consensus

Patients who have problems with food intake and speech because of oral cavity carcinoma and/or receive radio/radiochemotherapy should have access to a speech therapist experienced with this condition before, during and after treatment.

LoE 2+ [760]
Strong Consensus

Background

Speech, language and swallowing impairments due to tumour or treatment should be assessed by speech therapists, phoniatrists and/or physiotherapists [754].

Any patient who is unable to feed themselves adequately with solid or liquid food or maintain an adequate amount of drink (dysphagia) due to a chewing, transport or swallowing disorder is at significant nutritional risk. Untreated or poorly controlled dysphagia reduces quality of life, interferes with targeted treatment of the tumor, and can lead to life-threatening complications, such as aspiration pneumonia [755]. The risk of aspiration has been reported to be 14% for patients with oral cavity carcinoma [756]. After completion of head and neck radiation, 17 – 36% of patients remain tube dependent, and 10-15% die in 3-5 years from aspiration [764]. Patients who have received radio-chemotherapy for advanced carcinoma of the head and neck suffer aspiration pneumonia in approximately one third [760]. Prophylaxis of this complication is among the most important tasks of dysphagia treatment [761]. Modification of head and body posture during swallowing, for example, can significantly reduce the risk of aspiration [755]. Swallowing therapy should therefore be carried out by adequately trained speech therapists [762], [763].

Diagnostically, high-frequency fluoroscopy or endoscopy can be performed to clarify the risk of aspiration before starting treatment [757].

Fluoroscopy has also been useful in assessing the risk of aspiration pneumonia in patients who have received radio-chemotherapy [760]. At the same time, this method can be used to diagnose recurrence [756]. Likewise, fiberoptic endoscopic evaluation of the swallowing process is a suitable tool for the diagnosis of dysphagia. Secretions and mucus in the larynx/pharynx can be visualized and evaluated. Fiberoptic
endoscopic evaluation can be used for targeted treatment planning. This method is inexpensive and is a reliable alternative to fluorscopy [758].

The aim of speech and swallowing rehabilitation is to bring the mobility of the remaining mucosal structures and the structures of the oral cavity, e.g. tongue, to the achievable optimum and to carry out a structured tracheal cannula management in wearers of a tracheal cannula. This is intended to create the conditions for the best possible communication and food intake. Specially after glossectomy or other major resections, speech therapy has proven to be helpful [759].

Various authors recommend keeping the phases of oral food abstinence as short as possible, since even a 2-week interruption of oral food intake can have negative consequences [765]. For this reason, therapy should be started about 14 days before the start of radio/radiochemotherapy [766]. Patients who are able to resume oral feeding prior to radiotherapy/radiochemotherapy keep the structures elastic during radiation by regular oral movements.

Lymphatic drainage may be useful after completion of radio/radiochemotherapy to treat facial or cervical lymphedema. This treatment should be carried out at a sufficient time interval from the tumour therapy and only by practitioners experienced in this field.

10.4. Nutritional Therapy

<table>
<thead>
<tr>
<th>GoR</th>
<th>Evidence-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Patients who are at risk of malnutrition due to tumor or treatment should receive professional nutritional counseling and nutritional therapy at an early stage.</td>
<td>[767]; [768]; [769]; [770]; [771]; [772]</td>
</tr>
</tbody>
</table>

Background

Early measures to ensure adequate nutrition, either by placement of a PEG tube or a nasogastric feeding tube, as well as further continuous nutritional counseling and diet modification in case of dysphagia contribute significantly to treatment success and quality of life in patients with head and neck cancer. A retrospective review identified factors according to which patients require professional nutritional counseling and nutritional support [768]. These are:

- alcohol abuse
- involvement of the root of the tongue
- pharyngectomy
- reconstruction with pectoralis major flap
- radiation therapy
- advanced tumor growth
- poorly differentiated tumors

Feeding via a PEG tube has been shown to be safe and effective, but there is no evidence for the appropriate timing of PEG placement [773], [774]. Prophylactic PEG placement
is recommended when intensive radio(chemo)therapy is planned [771]. Compared to the nasogastric feeding tube, which is a foreign body impairing swallowing and speech, the PEG tube is considered more comfortable due to its higher wearing comfort, although it is more often associated with persistent dysphagia and an increased need for pharyngoesophageal dilatations [772]. Further information on nutrition therapy can be found in the S3 guideline "Parenteral nutrition" (AWMF 073-018).

10.5. Psychosocial counselling and care

<table>
<thead>
<tr>
<th>9.8</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Patients with oral cavity carcinoma shall be offered psychosocial care by social workers.</td>
<td>Strong Consensus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9.9</th>
<th>Consensus-based Recommendation</th>
<th>checked 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>To ensure continuity of psycho-oncological care after inpatient treatment, patients with oral cavity carcinoma shall be informed about further outpatient and aftercare services (cancer counselling centres, established psychotherapists, self-help groups, social counselling).</td>
<td>Strong Consensus</td>
</tr>
</tbody>
</table>

Background

It has been demonstrated that a quarter of all patients with oral cavity carcinoma suffer from anxiety and depression and have difficulty maintaining their quality of life [773], [776]. The complex needs of patients with oral cavity carcinoma necessitate active psychosocial support, which should continue for at least three months after completion of therapy [775], [777]. There are no studies that have examined the clinical benefits of psychosocial therapy, specifically in patients with oral cavity carcinoma, evidence-based. However, the effectiveness of psycho-oncological interventions in cancer patients in general is well established (see S3 guideline Psychooncological diagnosis, counseling and treatment of cancer patients, AWMF 032-052OL). It has not yet been clarified when therapy should be provided by social workers and when by psychologists. However, it is known that 59% of patients want support from a social worker and 22% from a psychologist [778]. There is no evidence based on scientific evidence as to which range of psychosocial support benefits patients with oral cavity carcinoma the most. A systematic review has identified factors that indicate a particular need for psychosocial support before treatment begins [779]. These factors are:

- low level of education
- childlessness
- male gender
- alcohol abuse
- unemployment

Another predictor of increased psychological distress is lack of social support [778]. Common problems expressed by patients relate to social interaction, communication
and fear of lack of economic security. Times of worst psychosocial situation of the patient are diagnosis and start of therapy [780]. Patients with oral cavity carcinoma may experience a renewed loss of quality of life after initial improvement during the first phase of treatment. As part of their inpatient stay, patients should be offered a rehabilitation programme via the social services department.

There are S3 guidelines for supportive therapy and psychooncological care that are also valid for the treatment of patients with oral cavity carcinoma (see https://www.awmf.org/uploads/tx_szleitlinien/032-054OLl_S3_Supportiv_2017-05.pdf and https://www.leitlinienprogramm-onkologie.de/leitlinien/psychoonkologie/).

11. Quality indicators

Quality indicators are measured variables whose collection serves to assess the quality of the underlying structures, processes or results. Quality indicators are an important instrument of quality management [592]. The aim of their use is the continuous improvement of care by presenting the results of care, critically reflecting on them and, if necessary, improving them. The present selection of quality indicators was prepared according to the methodology of the guideline programme on oncology [593]. For the derivation process, a „Quality Indicators Working Group“ (AG QI) was constituted. This group created the final set of quality indicators based on the existing quality indicators of the 2012 guideline, the strong recommendations (recommendation strength A, „should“) of the updated guideline, the results of the existing quality indicators from the certified head and neck tumor centers of the German Cancer Society[1] and the results of the search for existing national and international quality indicators. The exact procedure and composition of the WG QI are presented in the guideline report.

After a face-to-face meeting and a telephone conference of this WG, a new indicator was adopted (QI 1: R0 situation after curative surgery). Of ten quality indicators existing since 2012 (version 1.0), one indicator was deleted (patients with ear, nose and throat examination to exclude synchronous second tumours). The guidelines thus continue to contain ten quality indicators.

The numerator is always a subset of the denominator.

QIs 1 and 6 can be documented with the basic oncology dataset.

[1] See https://www.krebsgesellschaft.de/jahresberichte.html

<table>
<thead>
<tr>
<th>Quality Indicator</th>
<th>Reference Recommendation</th>
<th>Evidence Basis / Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI 1: R0 situation after curative surgery</td>
<td>In order to exclude synchronous secondary tumors, an examination of the ear, nose and throat - and possibly endoscopy - shall be performed as part of the</td>
<td>Not a recommendation, but derived from a specific guideline objective.</td>
</tr>
</tbody>
</table>

Table 5: Quality Indicators
<table>
<thead>
<tr>
<th>Quality Indicator</th>
<th>Reference Recommendation</th>
<th>Evidence Basis / Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients with first diagnosis of oral cavity carcinoma and resection with curative intention</td>
<td>primary diagnosis of oral cavity carcinoma.</td>
<td></td>
</tr>
<tr>
<td>Quality Objective:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As often as possible R0 status after completion of curative intended surgical therapy.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QI 2: Imaging techniques and further diagnostics/ Imaging techniques and diagnostics for the detection of metastasis

| Enumerator | Number of patients with examination of the region from the skull base to the upper thoracic aperture with CT or MRI to determine the N category | Denominator | All patients with oral cavity carcinoma | 6.10 | To determine the N category, the entire region from the skull base to the upper thoracic aperture shall be examined with CT or MRI. | All patients with oral cavity carcinoma Recommended LoE 2+, strong consensus. |

QI 3: Imaging and further diagnostics/ Imaging and diagnostics to exclude synchronous second tumours, distant metastases, unknown primary tumours (CUP) and recurrences

| Enumerator | Number of patients with chest CT to exclude pulmonary tumor involvement (filia, second carcinoma) | Denominator | All patients with oral cavity carcinoma stage III + IV | 6.13 | In patients with advanced oral cavity carcinoma (stage III, IV), a chest CT shall be performed to exclude pulmonary tumor involvement (filia, second carcinoma). | Recommendation LoE 3, strong consensus |

QI 4: Biopsy and histopathology

| Enumerator | Number of patients for whom the histopathological findings are documented as | 7.4 | In correspondence with the clinician, the histopathological report shall describe the exact | Recommendation LoE 2++, strong consensus |

© German Guideline Program in Oncology | Evidence-based Guideline oral cavity cancer - V3.0 | January 2021
<table>
<thead>
<tr>
<th>Quality Indicator</th>
<th>Reference Recommendation</th>
<th>Evidence Basis / Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>follows: tumour location, macroscopic tumour size, histological tumour type according to WHO, histological tumour grade, depth of invasion, lymph vessel invasion, blood vessel invasion and perineural invasion, locally infiltrated structures, classification pT, details of affected areas and infiltrated structures, R-status.</td>
<td>location of any R+ situation that may be present. The tumour specimen shall be sent to the pathologist with clear designation of the anatomical topography. Suture or color marking may be done for this purpose. The histopathologic findings shall include: Tumor location, macroscopic tumor size, histologic tumor type according to WHO, histologic tumor grade, depth of invasion, lymphatic vessel invasion, blood vessel invasion and perineural invasion, locally infiltrated structures, classification pT, details of affected districts and infiltrated structures, R status.</td>
<td></td>
</tr>
</tbody>
</table>

Denominator

All patients with oral cavity carcinoma and surgery

IQ 5: Treatment recommendations

Enumerator

Number of patients with interdisciplinary treatment after coordination in tumour boards involving the specialist disciplines of oral and maxillofacial surgery, otorhinolaryngology, radiotherapy, oncology, pathology and radiology

Denominator

All patients with oral cavity carcinoma

Interdisciplinary treatment was considered very important. The highest possible indicator expression is aimed for

8.1

The treatment of oral cavity carcinoma shall be carried out in an interdisciplinary manner after coordination of each individual case within tumour boards involving the specialist disciplines of oral and maxillofacial surgery, otorhinolaryngology, radiotherapy, oncology, pathology and radiology.

EK, strong consensus
<table>
<thead>
<tr>
<th>Quality Indicator</th>
<th>Reference Recommendation</th>
<th>Evidence Basis / Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI 6: Treatment recommendations/ cervical lymph node evacuation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enumerator</td>
<td>Number of patients with elective neck dissection</td>
<td>8.11 Patients with clinically unremarkable lymph node status (cN0) shall undergo elective neck dissection regardless of T category.</td>
</tr>
<tr>
<td>Denominator</td>
<td>All patients with oral cavity carcinoma and cNO of any T category.</td>
<td></td>
</tr>
<tr>
<td>QI 7: Treatment recommendations/ radiotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enumerator</td>
<td>Number of patients without interruption of radiotherapy</td>
<td>8.27 Interruption of radiotherapy leads to deterioration of tumor control and shall be avoided.</td>
</tr>
<tr>
<td>Denominator</td>
<td>All patients with oral cavity carcinoma and radiotherapy</td>
<td></td>
</tr>
<tr>
<td>Definition „Interruption“: An interruption occurs if it delays the recommended time to completion of 11 weeks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 8: Treatment recommendations/ radiotherapy in combination with chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enumerator</td>
<td>Number of patients with postoperative radio- or radiochemotherapy</td>
<td>8.35 Postoperative radio- or radiochemotherapy shall be given in cases of advanced T category (T3/T4), scarce or positive resection margins, perineural or vascular invasion, and/or lymph node involvement.</td>
</tr>
<tr>
<td>Denominator</td>
<td>All patients with T3/T4 category, scarce or positive resection margins, perineural or vascular invasion or LK+.</td>
<td></td>
</tr>
<tr>
<td>Definition „close“ Safety distance: 1-3 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 9: Treatment recommendations/ prevention and treatment of radiation-related side effects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quality Indicator

<table>
<thead>
<tr>
<th>Enumerator</th>
<th>Reference Recommendation</th>
<th>Evidence Basis / Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients with dental examination before the start of radio- or radiochemotherapy</td>
<td>8.42 Patients shall receive a dental examination and, if necessary, conservative and/or surgical dental rehabilitation before undergoing radio/radiochemotherapy in the oral cavity to prevent osteoradionecrosis.</td>
<td>EK, strong consensus</td>
</tr>
</tbody>
</table>

Denominator

All patients with oral cavity carcinoma and radio- or radiochemotherapy

QI 10: Aftercare and rehabilitation/ Psychosocial counselling and care

<table>
<thead>
<tr>
<th>Enumerator</th>
<th>Reference Recommendation</th>
<th>Evidence Basis / Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients with documented offer of psychosocial care by a social worker</td>
<td>9.8 Patients with oral cavity carcinoma shall be offered psychosocial care by social workers.</td>
<td>EK, strong consensus</td>
</tr>
</tbody>
</table>

Denominator

All patients with oral cavity carcinoma

The social worker should communicate the availability of the service to the patient.

12. Appendix

12.1. Overview of changes in version 3.0

Table 6: modified and new recommendations and statements in version 3.0

<table>
<thead>
<tr>
<th>Version 2.0</th>
<th>Version 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>To exclude synchronous second tumours, an ear, nose and throat examination should be performed as part of the primary diagnosis of oral cavity carcinoma, with endoscopy if necessary.</td>
<td>Retained after deletion of the amendment as part of the consultation: An ear, nose and throat examination, endoscopy if necessary, should be performed as part of the primary diagnosis of oral cavity carcinoma to exclude synchronous second tumours.</td>
</tr>
<tr>
<td>PET-CT has no value in the primary diagnosis of local</td>
<td>Modified:</td>
</tr>
</tbody>
</table>
12.1 Overview of changes in version 3.0

<table>
<thead>
<tr>
<th>Version 2.0</th>
<th>Version 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>extension of a known oral cavity carcinoma</td>
<td>In locoregionally advanced tumors, FDG-PET/CT may be performed to exclude distant metastases prior to function-restricting therapeutic measures.</td>
</tr>
<tr>
<td></td>
<td>New: HPV-positive and/or p16-positive oral cavity carcinomas should be treated no differently than alcohol- and nicotine-associated carcinomas.</td>
</tr>
<tr>
<td></td>
<td>New: For maxillary carcinoma, the evidence is insufficient to derive a general recommendation against neck dissection level I-III (SOHND) and for a „wait and see“ approach.</td>
</tr>
<tr>
<td></td>
<td>New: For cT1cN0 carcinoma of the maxilla, neck dissection level I-III can be waived if localization is limited to alveolar process and hard palate, depth of invasion is less than 3mm, permanent angmaschic follow-up is ensured, and T category is confirmed after histological workup.</td>
</tr>
<tr>
<td></td>
<td>New: There is no robust evidence from clinically controlled trials for the appropriateness of SLN biopsy as a method to avoid elective neck lymph node evacuation.</td>
</tr>
<tr>
<td></td>
<td>New: SLN biopsy can be offered for early, transorally resectable oral cavity carcinomas that do not require a transcervical approach in the same procedure.</td>
</tr>
<tr>
<td></td>
<td>New: If the sentinel lymph node is positive and detection is uncertain, a completion neck dissection should be performed.</td>
</tr>
<tr>
<td></td>
<td>New: Evidence is insufficient at this time to derive a clear formulation for a recommendation for neck dissection level I-III (SOHND) rather than neck dissection level I-V for invasive oral cavity carcinoma with cN1.</td>
</tr>
<tr>
<td></td>
<td>New: In the presence of a cN1 or N1 subgroup, selective neck dissection may be performed only to level III as an alternative to MRND to level V, provided there is no extranodal growth and the neck dissection extends at least one level more caudally than the level of LK metastasis.</td>
</tr>
<tr>
<td></td>
<td>New: For invasive oral cavity carcinoma with LK metastasis in level IIb-III, in terms of incidence of LK recurrence or survival rates,</td>
</tr>
</tbody>
</table>
Version 2.0

<table>
<thead>
<tr>
<th>Version 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>neither MRND (level I-V) nor SOHND (I-III) has adequate trial evidence of superiority.</td>
</tr>
<tr>
<td>New: Planned bony reconstruction of the maxilla and mandible can be CAD/CAM-assisted. This is especially true for complex(multi-segmental) defects.</td>
</tr>
<tr>
<td>New: In the presence of a pN1 category of pT1 or pT2 squamous cell carcinoma, the indication for adjuvant radio(chemo)therapy can be offered.</td>
</tr>
<tr>
<td>New: Salvage lymph node dissection may be omitted in the presence of negative FDG-PET findings and non-necrotic lymph nodes on anatomic imaging after primary RCTx.</td>
</tr>
<tr>
<td>Patients with incurable tumor disease but good general and performance status should receive palliative platinum-based chemotherapy in combination with cetuximab. Monotherapy should be considered for patients with reduced general condition. Excessive toxicity from combination chemotherapy should be avoided.</td>
</tr>
<tr>
<td>Modified: Pembrolizumab, an antibody directed against the PD-1 receptor, should be used as first-line monotherapy or in combination with platinum and 5-fluorouracil in patients with PD-L1-expressing tumor and immune cells (CPS ≥1).</td>
</tr>
<tr>
<td>New: In patients pathologically lacking PD-L1-expressing tumor or immune cells (CPS<1), the EGRF receptor-targeting antibody cetuximab should be used as first line therapy in combination with platinum (preferably cisplatin) and 5-fluorouracil (EXTREME regimen) in the palliative setting in patients in good general health who no longer qualify for local therapy.</td>
</tr>
<tr>
<td>New: After 4-6 cycles of this combination, maintenance therapy until progression should be given with pembrolizumab in PD-L1 positive patients or cetuximab in PD-L1 negative patients if the disease is not progressive.</td>
</tr>
<tr>
<td>New:</td>
</tr>
</tbody>
</table>
After failure of first-line platinum-containing therapy with cetuximab, second-line therapy with a checkpoint inhibitor should be given according to approval status.

New:
After failure of first-line platinum-containing therapy with pembrolizumab, second-line therapy with a taxane, in combination with cetuximab if appropriate.

New:
After failure of first-line therapy with pembrolizumab as monotherapy, second-line therapy with platinum/5-FU and cetuximab may be given.

A combination of multiple immunotherapies cannot be recommended in clinical practice and should be further evaluated in clinical trials.

Cross-sectional imaging (e.g. CT) should be performed every 6 to 12 weeks during ongoing palliative systemic therapy, depending on the line of therapy and the dynamics of the disease.

12.2. TNM classification

Table 7: T-classification (primary tumor)

<table>
<thead>
<tr>
<th>T-Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumour cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td>T1</td>
<td>Largest tumour extension ≤2 cm, depth of invasion (DOI) ≤5 mm</td>
</tr>
<tr>
<td>T2</td>
<td>Largest tumour extension ≤2 cm, DOI >5 mm and ≤10 mm OR Tumour >2 cm but ≤4 cm, and DOI ≤10 mm</td>
</tr>
<tr>
<td>T3</td>
<td>Largest tumor extension >4cm OR any tumor >10 mm DOI</td>
</tr>
<tr>
<td>T4</td>
<td>Infiltration into adjacent structures</td>
</tr>
</tbody>
</table>
Table 8: N Classification (Regional Lymph Node Metastases)

<table>
<thead>
<tr>
<th>N Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastases</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasis in solitary ipsilateral lymph node up to 3 cm and ENE(−)</td>
</tr>
<tr>
<td>N2a</td>
<td>Metastasis in solitary ipsilateral lymph node up to 3 cm and ENE(+); or metastasis in solitary ipsilateral lymph node 3 to 6 cm and ENE(−)</td>
</tr>
<tr>
<td>N2b</td>
<td>Metastasis in multiple ipsilateral lymph nodes, none larger than 6 cm and ENE(−)</td>
</tr>
<tr>
<td>N2c</td>
<td>Metastases in bilateral or contralateral lymph nodes, none greater than 6 cm and ENE(−)</td>
</tr>
<tr>
<td>N3a</td>
<td>Metastasis in solitary lymph node greater than 6 cm and ENE(−)</td>
</tr>
<tr>
<td>N3b</td>
<td>Metastasis in solitary ipsilateral lymph node greater than 3 cm and ENE(−); OR metastasis in multiple ipsilateral, contralateral OR bilateral lymph nodes, at least one of which is ENE(+); OR metastasis in a solitary contralateral lymph node, 3 cm or smaller and ENE(+)</td>
</tr>
</tbody>
</table>

ENE = extranodal extension: extranodal growth

Table 9: M-Classification

<table>
<thead>
<tr>
<th>M-Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
<td>Distant metastases cannot be assessed</td>
</tr>
<tr>
<td>M0</td>
<td>No distant metastases</td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis(s)</td>
</tr>
</tbody>
</table>

Table 10: R Status

<table>
<thead>
<tr>
<th>R Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX</td>
<td>Presence of residual tumor cannot be assessed</td>
</tr>
<tr>
<td>R0</td>
<td>No residual tumor</td>
</tr>
</tbody>
</table>
Table 11: Grading

<table>
<thead>
<tr>
<th>Grading</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX</td>
<td>Degree of differentiation cannot be determined</td>
</tr>
<tr>
<td>G1</td>
<td>Well differentiated</td>
</tr>
<tr>
<td>G2</td>
<td>Moderately differentiated</td>
</tr>
<tr>
<td>G3</td>
<td>Poorly differentiated</td>
</tr>
<tr>
<td>G4</td>
<td>Undifferentiated</td>
</tr>
</tbody>
</table>

Table 12: L (lymphatic vessel invasion)

<table>
<thead>
<tr>
<th>L (lymphatic vessel invasion)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>No lymphatic vessel invasion</td>
</tr>
<tr>
<td>L1</td>
<td>Lymphatic vessel invasion</td>
</tr>
</tbody>
</table>

Table 13: V (vein invasion)

<table>
<thead>
<tr>
<th>V (Vein Invasion)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0</td>
<td>Vein invasion not detectable</td>
</tr>
<tr>
<td>V1</td>
<td>Vein invasion microscopically detectable</td>
</tr>
<tr>
<td>V2</td>
<td>Vein invasion macroscopically detectable</td>
</tr>
</tbody>
</table>

Table 14: Tumor stages according to UICC criteria

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage</td>
<td>T</td>
<td>N</td>
<td>M</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>III</td>
<td>T1, T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0, N1</td>
<td>M0</td>
</tr>
<tr>
<td>IVA</td>
<td>T1, T2, T3</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4a</td>
<td>N0, N1, N2</td>
<td>M0</td>
</tr>
<tr>
<td>IVB</td>
<td>T4b</td>
<td>any N</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>each T</td>
<td>N3</td>
<td>M0</td>
</tr>
<tr>
<td>IVC</td>
<td>each T</td>
<td>any N</td>
<td>M1</td>
</tr>
</tbody>
</table>
12.3 Classification of the cervical lymph nodes

Figure 1: Classification of the cervical lymph nodes according to Robbins
12.3 Classification of the cervical lymph nodes

Figure 2: Structure of the oral cavity (a)
13. Evidence tables

14. List of Figures

Figure 1: Classification of the cervical lymph nodes according to Robbins ... 82

Figure 2: Structure of the oral cavity (a)... 83

Figure 3: Structure of the oral cavity (b) ... 84

15. List of Tables

Table 1: Participating professional associations and organizations .. 7

Table 2: Composition of Guideline Workgroups.. 9
12.3 Classification of the cervical lymph nodes

Table 3: Abbreviations Used ... 11
Table 4: Classification of the cervical lymph nodes according to Robbins.. 37
Table 5: Quality Indicators .. 71
Table 6: modified and new recommendations and statements in version 3.0 75
Table 7: T-classification (primary tumor) ... 78
Table 8: N classification (regional lymph node metastases).. 79
Table 9: M-Classification ... 79
Table 10: R status .. 79
Table 11: Grading ... 80
Table 12: L (lymphatic vessel invasion) ... 80
Table 13: V (vein invasion) ... 80
Table 14: Tumor stages according to UICC criteria .. 80
16. Bibliography

© German Guideline Program in Oncology | Evidence-based Guideline oral cavity cancer - V3.0 | January 2021
64. British Dental Association, Opportunistic oral cancer screening. BDA occasional paper, 2000. 6:

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

405. Lim, Young Chang, Song, Mee Hyun, Kim, Sang Cheol, Kim, Kwang Moon, Choi, Eun Chang, Preserving level IIb lymph nodes in elective supraomohyoid neck dissection for oral
12.3 Classification of the cervical lymph nodes

419. Yamauchi, K., Kogashiwa, Y., Nakamura, T., Moro, Y., Nagafuji, H., Kohno, N., Diagnostic evaluation of sentinel lymph node biopsy in early head and neck squamous cell
420. Alkureishi, L. W., Ross, G. L., Shoab, T., Soutar, D. S., Robertson, A. G., Thompson, R.,
et.al. Sentinel node biopsy in head and neck squamous cell cancer: 5-year follow-up of a
node biopsy versus elective neck dissection in patients with cT1-2N0 oral tongue squamous
Sentinel node biopsy in early oral squamous cell carcinomas: Long-term follow-up and nodal
postoperative morbidity, and quality of life after cervical sentinel node biopsy and after
424. Inoue, Hiroyuki, Nibu, Ken-Ichi, Saito, Miki, Otsuki, Naoki, Ishida, Haruhiko, Onitsuka,
Tetsuro, et.al. Quality of life after neck dissection. Archives of Otolaryngology—Head & Neck
Dissection on Health-Related Quality of Life. Archives of Otolaryngology - Head and Neck
426. Jesse, R. H., Ballantyne, A. J., Larson, D., Radical or modified neck dissection: a
427. Lingeman, R. E., Helmus, C., Stephens, R., Ulm, J., Neck dissection: radical or
429. Andersen, P. E., Shah, J. P., Cambronero, E., Spiro, R. H., The role of comprehensive
neck dissection with preservation of the spinal accessory nerve in the clinically positive neck.
430. Bocca, E., Pignataro, O., A conservation technique in radical neck dissection. Ann Otol
431. Chu, W., Strawitz, J. G., Results in suprathyroid, modified radical, and standard radical
neck dissections for metastatic squamous cell carcinoma: recurrence and survival. Am J Surg,
432. Kohler, Hugo Fontan, Cunha, Isabella Werneck da, Kowalski, Luiz Paulo, Impact of
modified radical neck dissections on the number of retrieved nodes, recurrence and survival.
433. Patel, Rajan S., Clark, Jonathan R., Gao, Kan, O'Brien, Christopher J., Effectiveness of
434. Rapoport, Abrao, Ortellado, Daniel Kanabben, Amar, Ali, Lehn, Carlos Neutzling,
Dedivitis, Rogerio Aparecido, Perez, Ricardo Salinas, et.al. Radical versus supraomohyoid neck
dissection in the treatment of squamous cell carcinoma of the inferior level of the mouth.
435. Chepeha, Douglas B., Hoff, Paul T., Taylor, Rodney J., Bradford, Carol R., Teknos,
Theodoros N., Esclamado, Ramon M., Selective neck dissection for the treatment of neck

© German Guideline Program in Oncology | Evidence-based Guideline oral cavity cancer - V3.0 | January 2021
12.3 Classification of the cervical lymph nodes

462. Bajwa, M. S., McMillan, R., Khattak, O., Thomas, M., Krishnan, O. P., Webster, K., Neck recurrence after level I-IV or I-III selective neck dissection in the management of the clinically

© German Guideline Program in Oncology | Evidence-based Guideline oral cavity cancer · V3.0 | January 2021
12.3 Classification of the cervical lymph nodes

606. Bachaud, J. M., Cohen-Jonathan, E., Alzieu, C., David, J. M., Serrano, E., Daly-Schweitzer, N., Combined postoperative radiotherapy and weekly cisplatin infusion for locally advanced...

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

© German Guideline Program in Oncology | Evidence-based Guideline oral cavity cancer · V3.0 | January 2021
12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

© German Guideline Program in Oncology | Evidence-based Guideline oral cavity cancer - V3.0 | January 2021

© German Guideline Program in Oncology | Evidence-based Guideline oral cavity cancer - V3.0 | January 2021

12.3 Classification of the cervical lymph nodes

12.3 Classification of the cervical lymph nodes

